首先这是一道计数类DP,那我们得先推式子,经过瞎掰乱凑,经过认真分析,我们可以得到这样的方程

F(N)=F(0)+F(1)+....+F(N-M-1)

所有F初值为1,F(1)=2

ANS=F(N+M);

那显然我们有这样的代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
const int M=1e9+;
using namespace std;
inline int read(){
char chr=getchar(); int f=,ans=;
while(!isdigit(chr)) {if(chr=='-') f=-;chr=getchar();}
while(isdigit(chr)) {ans=(ans<<)+(ans<<);ans+=chr-'';chr=getchar();}
return ans*f;
}
void write(int x){
if(x<) putchar('-'),x=-x;
if(x>) write(x/);
putchar(x%+'');
}int n,m,f[];
int main(){
n=read(),m=read();
f[]=;f[]=;
for(int i=;i<=n+m;i++){
f[i]=;
for(int j=;j<=i-m-;j++)
if(f[i]+f[j]>M) f[i]=f[i]+f[j]-M;
else f[i]=f[i]+f[j];//卡一波时间
}cout<<f[n+m];
return ;
}

显然这是O(n^2)的算法,然而面对N=1e18,这个算法可以去优化见鬼了,这样子由于语句比较简单,勉强可以过十万的数据大概30分

考虑优化:

我们先看一下上面的式子,尝试对这个式子变形...好吧,其实就是迭代,然后用鸽笼原理一通乱搞:

F(N)=F(N-1)+F(N-M-1)

ANS=F(N)

好了我们把这个东西优化得到了O(N)的算法:

期望得分:50pts

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
const int M=1e9+;
using namespace std;
inline int read(){
char chr=getchar(); int f=,ans=;
while(!isdigit(chr)) {if(chr=='-') f=-;chr=getchar();}
while(isdigit(chr)) {ans=(ans<<)+(ans<<);ans+=chr-'';chr=getchar();}
return ans*f;
}
void write(int x){
if(x<) putchar('-'),x=-x;
if(x>) write(x/);
putchar(x%+'');
}int n,m,f[];
int main(){
n=read(),m=read();
f[]=;f[]=;
for(int i=;i<=n;i++)
f[i]=(f[i-]+f[max(i-m-,)])%M;
cout<<f[n];
return ;
}

考虑继续优化

某个大佬说过1e18的数据考虑logn的算法,比如快速幂。

这既然是DP,那自然往矩阵乘法考虑。

  考虑构造矩阵:m这么小,而且递推式中出现的常量只有m,显然矩阵的大小要往m*m考虑

  m=1的时候斐波那契,显然不用我推了

  看一下其他情况:

  

得到通式(写了的是1,其他是0):

然后会矩阵加速的同学都知道该怎么做了吧...

 // luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
const int M=1e9+;
using namespace std;
inline int read(){
char chr=getchar(); int f=,ans=;
while(!isdigit(chr)) {if(chr=='-') f=-;chr=getchar();}
while(isdigit(chr)) {ans=(ans<<)+(ans<<);ans+=chr-'';chr=getchar();}
return ans*f;
}
void write(int x){
if(x<) putchar('-'),x=-x;
if(x>) write(x/);
putchar(x%+'');
}int n,m;
struct P{int a[][];P(){memset(a,,sizeof(a));}}A,B;
P operator *(const P &x,const P &y){
P ans;
for(int i=;i<m;i++)
for(int k=;k<m;k++)
for(int j=;j<m;j++)
ans.a[i][j]=(ans.a[i][j]+x.a[i][k]*y.a[k][j])%M;
return ans;
}
void KSM(int n){
while(n){
if(n&) B=B*A;
n>>=;A=A*A;
}
}
inline void init(){
n=read(),m=read();--n,++m;
A.a[m-][m-]=A.a[][m-]=;
for(int i=;i<m-;i++) A.a[i+][i]=;//初始矩阵
for(int i=;i<m;i++)B.a[][i]=i+;
}
signed main(){
init();KSM(n);
write(B.a[][]);
return ;
}

【LuoguP5004】 专心OI - 跳房子的更多相关文章

  1. 洛谷【P5004 专心OI - 跳房子】 题解

    题目链接 https://www.luogu.org/problem/P5004 洛谷 P5004 专心OI - 跳房子 Imakf有一天参加了PINO 2017 PJ组,他突然看见最后一道题 他十分 ...

  2. [luogu5004]专心OI - 跳房子【矩阵加速+动态规划】

    传送门:https://www.luogu.org/problemnew/show/P5004 分析 动态规划转移方程是这样的\(f[i]=\sum^{i-m-1}_{j=0}f[j]\). 那么很明 ...

  3. 「P5004」专心OI - 跳房子 解题报告

    题面 把\(N\)个无色格子排成一行,选若干个格子染成黑色,要求每个黑色格子之间至少间隔\(M\)个格子,求方案数 思路: 矩阵加速 根据题面,这一题似乎可以用递推 设第\(i\)个格子的编号为\(i ...

  4. P5002 专心OI - 找祖先

    P5002 专心OI - 找祖先 给定一棵有根树(\(n \leq 10000\)),\(M \leq 50000\) 次询问, 求以 \(x\) 为 \(LCA\) 的点对个数 错误日志: 看下面 ...

  5. 【洛谷 5002】专心OI - 找祖先 (树上计数)

    专心OI - 找祖先 题目背景 \(Imakf\)是一个小蒟蒻,他最近刚学了\(LCA\),他在手机\(APP\)里看到一个游戏也叫做\(LCA\)就下载了下来. 题目描述 这个游戏会给出你一棵树,这 ...

  6. luogu P5002 专心OI - 找祖先

    题目描述 这个游戏会给出你一棵树,这棵树有NN个节点,根结点是RR,系统会选中MM个点P_1,P_2...P_MP 1 ​ ,P 2 ​ ...P M ​ ,要Imakf回答有多少组点对(u_i,v_ ...

  7. 洛谷P5002 专心OI - 找祖先

    题目概括 题目描述 这个游戏会给出你一棵树,这棵树有\(N\)个节点,根结点是\(R\),系统会选中\(M\)个点\(P_1,P_2...P_M\). 要Imakf回答有多少组点对\((u_i,v_i ...

  8. [luogu5002]专心OI - 找祖先

    [传送门] 我们还是先将一下算法的步骤,待会再解释起来方便一点. 算法步骤 首先我们算出每个子树的\(size\). 我们就设当前访问的节点 然后我们就得到了当前这个节点的答案是这个树整个的\(siz ...

  9. 关于我的OI生涯(AFO){NOIP2016 后}

    这篇我就随意写啦~不用统一的“题解”形式.♪(^∀^●)ノ 也分好几次慢慢更吧~ 对于NOIP2016的总结,我本想善始善终back回,但是心情不足以支撑我,那就只能有始有终了......下面进入我的 ...

随机推荐

  1. 戴尔14G服务器用H740P配置阵列

    公司采购了几台dell r740机器.做阵列的方式跟之前ctrl+r有很大改动. 戴尔14G机器已经面世一段时间了,14G的机器使用过后都能发现器性能比上一代机器提升了很多,今天给大家带来戴尔14代服 ...

  2. ARM异常中断返回的几种情况

    在学习韦老师视频中中断异常部分时候,对于发生中断时需要执行的#保存异现场 #恢复现场 中的“返回”弄不清楚,查阅网络文章后,发现一篇概述我觉得我能理解的一篇如下:   重要基础知识:R15(PC)总是 ...

  3. 换个语言学一下 Golang (4)——变量与常量

    一.变量定义 所谓的变量就是一个拥有指定名称和类型的数据存储位置. //看一个例子 package main import ( "fmt" ) func main() { var ...

  4. How To : Modify ASM SYS password using asmcmd 11g R2 and upper

    修改RAC 11gR2及以上版本的ASM的SYS的密码方法 [grid]$ asmcmd ASMCMD> orapwusr --modify --password sys Enter passw ...

  5. 20.混合使用match和近似匹配实现召回率与精准度的平衡

    主要知识点: 召回率的慨念 精准度的慨念 match和近似匹配混合使用方法         召回率(recall):比如你搜索一个java spark,总共有100个doc,能返回多少个doc作为结果 ...

  6. 【codeforces 796C】Bank Hacking(用一些技巧来代替multiset)

    [题目链接]:http://codeforces.com/contest/796/problem/C [题意] 给你n个节点,你一开始选择一个节点,然后打掉它,然后与被打掉过的节点相连的节点才能被 打 ...

  7. springboot优雅关机

    Spring boot 2.0 之优雅停机  rabbitGYK 关注 2018.05.20 18:41* 字数 1794 阅读 2638评论 0喜欢 22 spring boot 框架在生产环境使用 ...

  8. 算是帮华仔写的撸JSON文件,然后发到我的REST接口的PYTHON代码

    很久没有写过类似的代码了,感觉好陌生... #!/usr/bin/python #coding:utf-8 import json import getopt import sys import re ...

  9. 阿里2016实习offer五面经验与总结

    前言 眼下楼主已经拿到阿里实习offer,一共经历了5次面试,当中4轮技术面.1轮HR面试.在这里分享一下自己的面试经验和学习总结.写这篇面经主要是希望可以帮助很多其它的小伙伴.我本科毕业于中南大学信 ...

  10. T4语法

    阅读目录   阅读目录 1.什么是T4? 2.vs插件的安装 3.T4初体验 4.T4语法 其实对于“T4模板”的学习,讲得最详细的还是MSDN,下面给出对应的链接,可以点开深入的了解. 回到顶部 1 ...