# 最长公共子序列问题
# 作用:求两个序列的最长公共子序列
# 输入:两个字符串数组:A和B
# 输出:最长公共子序列的长度和序列
def LCS(A,B):

    print('输入字符串数组A',A)
print('输入字符串数组B',B);print('\n')
n = len(A)
m = len(B) # 在字符串数组A、B之前插入字符0,目的是使后面下标统一
A.insert(0,'0')
B.insert(0,'0') # 二维表L存放公共子序列的长度
L = [ ([0]*(m+1)) for i in range(n+1) ]
# 二维表C存放公共子序列的长度步进
C = [ ([0]*(m+1)) for i in range(n+1) ] for x in range (0,n+1):
for y in range (0,m+1):
if (x==0 or y==0):
L[x][y] = 0
elif A[x] == B[y]:
L[x][y] = ( L[x-1][y-1] + 1 )
C[x][y] = 0
elif L[x-1][y] >= L[x][y-1]:
L[x][y] = L[x-1][y]
C[x][y] = 1
else:
L[x][y] = L[x][y-1]
C[x][y] = -1 print('二维表行标:',x)
print(L[x]) print('\n');print('公共子序列长度二维表:');print (L)
print('\n');print('公共子序列长度步进表:');print (C);print('\n')
return L[n][m],C,n,m

其中返回的 L[n][m] 就是最长公共子序列的长度,以下打印序列:

def printLCS(C,A,x,y):

    if ( x == 0 or y == 0):
return 0
if C[x][y] == 0:
printLCS(C,A,x-1,y-1)
print (A[x])
elif C[x][y] == 1:
printLCS(C,A,x-1,y)
else:
printLCS(C,A,x,y-1)

输入字符串数组A、B并进行函数调用:

A = ['z', 'x', 'y', 'x', 'y', 'z']
B = ['x', 'y', 'y', 'z', 'x']
length,C,x,y = LCS(A,B)
print('最长公共子序列长度为:',length)
print('最长公共子序列为:')
printLCS(C,A,x,y)

运行结果:

二维表行标: 0
[0, 0, 0, 0, 0, 0]
二维表行标: 1
[0, 0, 0, 0, 1, 1]
二维表行标: 2
[0, 1, 1, 1, 1, 2]
二维表行标: 3
[0, 1, 2, 2, 2, 2]
二维表行标: 4
[0, 1, 2, 2, 2, 3]
二维表行标: 5
[0, 1, 2, 3, 3, 3]
二维表行标: 6
[0, 1, 2, 3, 4, 4] 公共子序列长度二维表:
[[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1], [0, 1, 1, 1, 1, 2], [0, 1, 2, 2, 2, 2], [0, 1, 2, 2, 2, 3], [0, 1, 2, 3, 3, 3], [0, 1, 2, 3, 4, 4]] 公共子序列长度步进表:
[[0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 0, -1], [0, 0, -1, -1, 1, 0], [0, 1, 0, 0, -1, 1], [0, 0, 1, 1, 1, 0], [0, 1, 0, 0, -1, 1], [0, 1, 1, 1, 0, -1]] 最长公共子序列长度为: 4
最长公共子序列为:
x
y
y
z

最长公共子序列问题(LCS)——Python实现的更多相关文章

  1. 动态规划法(十)最长公共子序列(LCS)问题

    问题介绍   给定一个序列\(X=<x_1,x_2,....,x_m>\),另一个序列\(Z=<z_1,z_2,....,z_k>\)满足如下条件时称为X的子序列:存在一个严格 ...

  2. 最长公共子序列问题 (LCS)

    给定两个字符串S和T.求出这两个字符串最长的公共子序列的长度. 输入: n=4 m=4 s="abcd" t="becd" 输出: 3("bcd&qu ...

  3. 动态规划经典——最长公共子序列问题 (LCS)和最长公共子串问题

    一.最长公共子序列问题(LCS问题) 给定两个字符串A和B,长度分别为m和n,要求找出它们最长的公共子序列,并返回其长度.例如: A = "HelloWorld"    B = & ...

  4. 【Luogu P1439】最长公共子序列(LCS)

    Luogu P1439 令f[i][j]表示a的前i个元素与b的前j个元素的最长公共子序列 可以得到状态转移方程: if (a[i]==b[j]) dp[i][j]=dp[i-1][j-1]+1; d ...

  5. 最长公共子序列(LCS)、最长递增子序列(LIS)、最长递增公共子序列(LICS)

    最长公共子序列(LCS) [问题] 求两字符序列的最长公共字符子序列 问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字 ...

  6. python 回溯法 子集树模板 系列 —— 14、最长公共子序列(LCS)

    问题 输入 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) 输出 输出最长的子序列,如果有多个,随意输出1个. 输入示例 belong cnblogs 输出示例 blog ...

  7. 删除部分字符使其变成回文串问题——最长公共子序列(LCS)问题

    先要搞明白:最长公共子串和最长公共子序列的区别.    最长公共子串(Longest Common Substirng):连续 最长公共子序列(Longest Common Subsequence,L ...

  8. 最长公共子序列(LCS)和最长递增子序列(LIS)的求解

    一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...

  9. 算法导论-动态规划(最长公共子序列问题LCS)-C++实现

    首先定义一个给定序列的子序列,就是将给定序列中零个或多个元素去掉之后得到的结果,其形式化定义如下:给定一个序列X = <x1,x2 ,..., xm>,另一个序列Z =<z1,z2  ...

  10. 最长公共子序列(LCS问题)

    先简单介绍下什么是最长公共子序列问题,其实问题很直白,假设两个序列X,Y,X的值是ACBDDCB,Y的值是BBDC,那么XY的最长公共子序列就是BDC.这里解决的问题就是需要一种算法可以快速的计算出这 ...

随机推荐

  1. 搞清楚Spring事件机制后:Spring的源码看起来简单多了

    本文主讲Spring的事件机制,意图说清楚: 什么是观察者模式? 自己实现事件驱动编程,对标Spring的事件机制 彻底搞懂Spring中的事件机制,从而让大家 本文内容较长,代码干货较多,建议收藏后 ...

  2. docker0-常用命令-持续更新

    问君哪得清如许,为有源头活水来 1,帮助命令 docker version docker info docker 命令 --help 2,仓库\镜像 docker images 查看所有本地镜像 do ...

  3. JNI相关笔记 [TOC]

    JNI相关笔记 目录 JNI相关笔记 1 生成native code所需要的头文件 2 JNI提供的一些函数和方法 3 局部引用,全局引用,全局弱引用. 4 异常 1 生成native code所需要 ...

  4. JAVA实现按列表中元素的时间字段排序

    JAVA代码实现按列表中元素的时间字段排序 导语: 工作中遇到一个问题,调用第三方接口返回的数据没有按时间倒序排列,测试说要加,然后在网上找到一个解决办法,这里记录一下 需求: 如下图列表,按生日进行 ...

  5. javascript之强制类型转换

    在javascript中,常会发生强制类型转换的情况有以下几种 字符串拼接 var a = 1; var b = a + '1'; console.log(b); //11 ==运算符 var a = ...

  6. GDI+中发生一般性错误的解决办法(转载)

    今天在开发.net引用程序中,需要System.Drawing.Image.Save 创建图片,debug的时候程序一切正常,可是发布到IIS后缺提示出现"GDI+中发生一般性错误" ...

  7. 两台主机间docker容器网络互通

    服务器1: 网络172.30.0.0/16 服务器2: 网络172.31.0.0/16 服务器1和服务器2上的docker容器网络之间是无法互通的,如果需要互通,需要做以下配置: 服务器1上执行: i ...

  8. 面试题四:手写sql

    矫正数据,有以下2个表,建表语句如下所示 -- 订单表 create table t_order ( id int auto_increment primary key, name varchar(2 ...

  9. GitLab升级(yum安装版v11.11.8~12.0.12)

    参考官方升级建议(注意升级路线:Example upgrade paths) 升级前请自行备份(测试可忽略此步骤) 生成备份文件,在/var/opt/gitlab/backups/目录下生成备份文件 ...

  10. python自定义异常,使用raise引发异常

    1.自定义异常类,自定义的异常类必须是Exception或者Error的子类! 1 #!/usr/bin/env python 2 # encoding: utf-8 3 4 class Illega ...