简介

R包sommer内置了C++,运算速度还是比较快的,功能也很丰富,可求解各种复杂模型。语法相比于lme4包也要好懂一些。

建议查看文档:vignette("v1.sommer.quick.start")

混合线性模型关键在于协方差结构的建立,有以下几类:

  • 复合对称(Compound Symmetry,CS),所有方差相等,所有协方差也相等,对应于单变量方法。但是对于不同尺度的变量是无意义的.
  • 方差组分(Variance Components),每个方差都不相同,并且全部协方差等于0。如果变量完全独立,并且彼此测量尺度不同,才是有意义的模式。
  • 非结构化(Unstructured),没有模式,每个方差和协方差完全不同,彼此间没有关系,对应于多变量方法。协方差结构有很多种,只有在特定的统计条件下才有意义。

调用模型并不难,难的是在理解的基础上如何随心所欲地应用。

GS示例代码

  • 预处理
library(sommer)

data(DT_wheat)
DT <- DT_wheat
GT <- GT_wheat
dim(GT)
GT[1:10,1:10] colnames(DT) <- paste0("X",1:ncol(DT))
DT <- as.data.frame(DT)
DT$id <- as.factor(rownames(DT))
rownames(GT) <- rownames(DT) # check NA
which(is.na(GT))
which(is.na(DT)) set.seed(12345)
y.trn <- DT #制造1/5的缺失值,作为验证集
vv <- sample(rownames(DT),round(nrow(DT)/5))
y.trn[vv,"X1"] <- NA
y.trn[1:5,1:5]
  • GBLUP
#######-----------GBLUP--------------------------------------
# GBLUP pedigree-based approach
K <- A.mat(GT) # additive relationship matrix
K[1:5,1:5]
colnames(K) <- rownames(K) <- rownames(DT)
#test first trait X1
system.time(
ans <- mmer(X1~1,
random=~vs(id,Gu=K),
rcov=~units,
data=y.trn,verbose = FALSE) # kinship based
)
ans$U$`u:id`$X1 <- as.data.frame(ans$U$`u:id`$X1)
rownames(ans$U$`u:id`$X1) <- gsub("id","",rownames(ans$U$`u:id`$X1)) cor(ans$U$`u:id`$X1[vv,],DT[vv,"X1"], use="complete")

  • RRBLUP
#######-----------rrBLUP--------------------------------------
system.time(
ans2 <- mmer(X1~1,
random=~vs(list(GT)),
rcov=~units,
data=y.trn,verbose = FALSE) # kinship based
)
u <- GT %*% as.matrix(ans2$U$`u:GT`$X1) # BLUPs for individuals
rownames(u) <- rownames(GT)
cor(u[vv,],DT[vv,"X1"]) # same correlation

两者结果相差不大(如果去掉随机种子,循环运行的结果相差还是很大的),运算时间相差比较大。

Ref: 协方差矩阵,协方差结构

【GS模型】使用R包sommer进行基因组选择的GBLUP和RRBLUP分析?的更多相关文章

  1. 【百奥云GS专栏】全基因组选择之工具篇

    目录 1. 免费开源包/库 1.1 R包 1.2 Python库 2. 成熟软件 3. WEB/GUI工具 前面我们已经介绍了基因组选择的各类模型,今天主要来了解一下做GS有哪些可用的软件和工具.基因 ...

  2. 【GS文献】植物全基因组选择育种技术原理与研究进展

    目录 1. 优势杂交育种预测 2. GS育种原理与模型算法 岭回归和LASSO回归 贝叶斯方法 GBLUP和RRBLUP 偏最小二乘法 支持向量机/支持向量回归 其他方法 3. 模型预测能力验证 4. ...

  3. 【百奥云GS专栏】全基因组选择之模型篇

    目录 1. 前言 2. BLUP方法 ABLUP GBLUP ssGBLUP RRBLUP 3. 贝叶斯方法 BayesA BayesB BayesC/Cπ/Dπ Bayesian Lasso 4. ...

  4. 【GS模型】全基因组选择之rrBLUP

    目录 1. 理论 2. 实操 2.1 rrBLUP包简介 2.2 实操 3. 补充说明 关于模型 关于交叉验证 参考资料 1. 理论 rrBLUP是基因组选择最常用的模型之一,也是间接法模型的代表.回 ...

  5. 【GS文献】全基因组选择模型研究进展及展望

    目录 1. GS概况 2. GS模型 1)直接法 GBLUP 直接法的模型改进 ①单随机效应 ②多随机效应 2)间接法 间接法模型 基于间接法的模型改进 3. GS模型比较 模型比较结论 4.问题及展 ...

  6. 【GS文献】植物育种中基因组选择的方法、模型及展望

    目录 1. GS/GP在植物育种中的角色 2. GP模型应用 3. GP模型的准确性 4. 植物育种的GS展望 5. 小结 Genomic SelectioninPlant Breeding: Met ...

  7. 【GS文献】基因组选择在植物分子育种应用的最新综述(2020)

    目录 1. 简介 2. BLUP类模型 3. Bayesian类模型 4. 机器学习 5. GWAS辅助的GS 6. 杂交育种 7. 多性状 8. 长期选择 9. 预测准确性评估 10. GS到植物育 ...

  8. GWAS与GS模型介绍与比较

    目录 1.GWAS模型 1.1卡方检验 1.2 相关性系数的t检验 1.3 一般线性模型GLM 1.4 混合线性模型MLM 1.5 压缩混合线性模型CMLM 1.6 SUPER 1.7 FarmCPU ...

  9. 【GS文献】从家畜到植物,通过基因组选择提高遗传增益

    目录 说明 1.前言 2.植物GS瓶颈 3.提高GS预测的准确性 4.GS与现代育种技术结合 5.GS开源育种网络 说明 Enhancing Genetic Gain through Genomic ...

随机推荐

  1. 【c++ Prime 学习笔记】第19章 特殊工具与技术

    某些程序对内存分配有特殊要求,不能直接使用标准内存管理机制 重载new和delete算符可控制内存分配的过程 19.1.1 重载new和delete 说法"重载new和delete" ...

  2. kivy浮点布局

    from kivy.app import App from kivy.uix.floatlayout import FloatLayout class FloatLayoutWidget(FloatL ...

  3. CentOS 文件管理

    目录 目录管理 目录结构 切换目录 查看目录 创建目录 复制目录 剪切目录 删除目录 文件管理 查看文件 创建文件 复制文件 剪切文件 删除文件 创建链接 目录管理 目录也是一种文件. 蓝色目录,绿色 ...

  4. js fetch异步请求使用详解

    目录 认识异步 fetch(url) response.json() 结合async和await 异常处理 post请求 认识异步 首先我们得明白请求是一个异步的过程. 因为请求需要时间向服务器发送请 ...

  5. jQuery常用验证

    1.文本框不能为为空 if ($("#RushStartTime").val() == "") { alert("请输入该产品.."); $ ...

  6. 转载:10G以太网光口与Aurora接口回环实验

    10G以太网光口与高速串行接口的使用越来越普遍,本文拟通过一个简单的回环实验,来说明在常见的接口调试中需要注意的事项.各种Xilinx FPGA接口学习的秘诀:Example Design.欢迎探讨. ...

  7. cf13A Numbers(,,)

    题意: Little Petya likes numbers a lot. He found that number 123 in base 16 consists of two digits: th ...

  8. Jenkins 邮件发送

    1.jenkins新建任务 2.配置svn 3.maven项目构建配置pom.xml 使用maven命令 clean test 构建前清除: 4.系统管理 => 插件管理 =>可选安装邮件 ...

  9. pip 常用命令小结

    pip 常用命令小结 pip这个工具我们经常会用到,毕竟python 是一门以第三方库庞大而著名的编程语言,所以我们总会用pip 安装一些依赖库,当然这只是pip 最常用的一个命令,下面就来介绍一下 ...

  10. vue 快速入门 系列 —— 使用 vue-cli 3 搭建一个项目(上)

    其他章节请看: vue 快速入门 系列 使用 vue-cli 3 搭建一个项目(上) 前面我们已经学习了一个成熟的脚手架(vue-cli),笔者希望通过这个脚手架快速搭建系统(或项目).而展开搭建最好 ...