洛谷 P5471 - [NOI2019] 弹跳(二维线段树优化建图+堆优化存边)
一道非常有意思的题(大概可以这么形容?)
首先看到这类一个点想一个区域内连边的题目可以很自然地想到线段树优化建图,只不过这道题是二维的,因此需要使用二维线段树优化建图,具体来说,我们外层开一棵大线段树维护 \(x\) 轴下标区间,大线段树上每个节点又套了个小的动态开点线段树,每次我们从一个点向一个矩形连边时就在动态开点线段树上找到对应的区间并从这个点向这些区间中连边,不难发现这个做法点数是 \(\mathcal O(n\log^2n)\) 级别的,边数是 \(\mathcal O(m\log^2n)\) 级别的,总复杂度 \(m\log^3n\),然鹅梦想很美满,现实很骨感,这个做法,它,MLE 了!因此我们还得考虑别的做法。
这时候就要用到一个叫做”堆优化存边“的 trick 了,在正常的 dijkstra 求最短路的过程中,我们小根堆中存的是起点到每个点的距离与其形成的 pair,但是这次咱们偏不存点,咱们存边,也就是题目中所说的弹跳装置。显然对于一个弹跳装置而言,如果起点到它的出发点 \(p_i\) 的最短路径长度已知,那么它用来更新矩形中所有点的距离就已经知道了——是 \(dis_{p_i}+t_i\),那么我们就将 \(dis_{p_i}+t_i\) 与弹跳装置的编号 \(i\) 看作一个 pair 压入小根堆中,每次取出小根堆的最小节点并找到它对应弹跳装置中的所有节点集合 \(S\)——这个咱们可以用线段树套 set 来求出,然后直接令 \(S\) 当中的点的最短路径为 \(dis_{p_i}+t_i\),然后将这些点直接从线段树中删除,显然每个点最多被访问并删除一次,每个点最多在 \(\log n\) 个节点中出现,再加上 set 的复杂度,总复杂度俩 \(\log\)。而且由于我们每次取出的是贡献最小的弹跳装置,因此每次找出的 \(S\) 中的节点必然是无法被更小的弹跳装置更新的,因此求出来的距离必定是起点到每个点的最短路。这样时间复杂度 \(n\log^2n+m\),空间复杂度 \(n\log n+m\),就不用再担心空间的问题了。
const int MAXN=7e4;
const int MAXM=1.5e5;
int n,m,w,h,dis[MAXN+5];
struct city{
int x,y,id;
city(int _x=0,int _y=0,int _id=0):x(_x),y(_y),id(_id){}
bool operator <(const city &rhs) const{
return (y^rhs.y)?(y<rhs.y):(id<rhs.id);
}
} a[MAXN+5];
priority_queue<pii,vector<pii>,greater<pii> > q;
set<city> st[MAXN*4+5];
vector<int> fr[MAXN+5];
struct bar{int p,l,r,u,d,c;} b[MAXM+5];
void insert(int k,int l,int r,int v){
st[k].insert(a[v]);if(l==r) return;int mid=l+r>>1;
(a[v].x<=mid)?insert(k<<1,l,mid,v):insert(k<<1|1,mid+1,r,v);
}
void del(int k,int l,int r,int v){
st[k].erase(st[k].find(a[v]));if(l==r) return;int mid=l+r>>1;
(a[v].x<=mid)?del(k<<1,l,mid,v):del(k<<1|1,mid+1,r,v);
}
void update(int k,int l,int r,int x,int y){
if(b[x].l<=l&&r<=b[x].r){
while(1){
set<city>::iterator it=st[k].lower_bound(city(0,b[x].d,0));
if(it==st[k].end()||(it->y)>b[x].u) break;
int id=(it->id);dis[id]=y;
for(int t:fr[id]) q.push(mp(y+b[t].c,t));
del(1,1,w,id);
} return;
} int mid=l+r>>1;
if(b[x].r<=mid) update(k<<1,l,mid,x,y);
else if(b[x].l>mid) update(k<<1|1,mid+1,r,x,y);
else update(k<<1,l,mid,x,y),update(k<<1|1,mid+1,r,x,y);
}
int main(){
scanf("%d%d%d%d",&n,&m,&w,&h);
for(int i=1;i<=n;i++) scanf("%d%d",&a[i].x,&a[i].y),a[i].id=i,insert(1,1,w,i);
for(int i=1;i<=m;i++){
scanf("%d%d%d%d%d%d",&b[i].p,&b[i].c,&b[i].l,&b[i].r,&b[i].d,&b[i].u);
fr[b[i].p].pb(i);
} b[++m].c=0;b[m].l=b[m].r=a[1].x;b[m].u=b[m].d=a[1].y;q.push(mp(0,m));
while(!q.empty()){pii p=q.top();q.pop();/*printf("%d %d\n",p.fi,p.se);*/update(1,1,w,p.se,p.fi);}
for(int i=2;i<=n;i++) printf("%d\n",dis[i]);
return 0;
}
洛谷 P5471 - [NOI2019] 弹跳(二维线段树优化建图+堆优化存边)的更多相关文章
- 【bzoj3073】[Pa2011]Journeys 线段树优化建图+堆优化Dijkstra
题目描述 Seter建造了一个很大的星球,他准备建造N个国家和无数双向道路.N个国家很快建造好了,用1..N编号,但是他发现道路实在太多了,他要一条条建简直是不可能的!于是他以如下方式建造道路:(a, ...
- 洛谷.3437.[POI2006]TET-Tetris 3D(二维线段树)
题目链接 下落一个d*s的方块,则要在这个平面区域找一个最高的h' 更新整个平面区域的值为h+h' 对于本题,维护最大高度h和all 对于平面的x轴维护一棵线段树t1,每个t1的节点维护对应y轴的两棵 ...
- 洛谷P3437 [POI2006]TET-Tetris 3D(二维线段树 标记永久化)
题意 题目链接 Sol 二维线段树空间复杂度是多少啊qwqqq 为啥这题全网空间都是\(n^2\)还有人硬要说是\(nlog^2n\)呀.. 对于这题来说,因为有修改操作,我们需要在外层线段树上也打标 ...
- 洛谷 P3688 - [ZJOI2017]树状数组(二维线段树+标记永久化)
题面传送门 首先学过树状数组的应该都知道,将树状数组方向写反等价于前缀和 \(\to\) 后缀和,因此题目中伪代码的区间求和实质上是 \(sum[l-1...n]-sum[r...n]=sum[l-1 ...
- 洛谷 P3397 地毯 【二维差分标记】
题目背景 此题约为NOIP提高组Day2T1难度. 题目描述 在n*n的格子上有m个地毯. 给出这些地毯的信息,问每个点被多少个地毯覆盖. 输入输出格式 输入格式: 第一行,两个正整数n.m.意义如题 ...
- BZOJ.4553.[HEOI2016&TJOI2016]序列(DP 树状数组套线段树/二维线段树(MLE) 动态开点)
题目链接:BZOJ 洛谷 \(O(n^2)\)DP很好写,对于当前的i从之前满足条件的j中选一个最大值,\(dp[i]=d[j]+1\) for(int j=1; j<i; ++j) if(a[ ...
- Codeforces 453E - Little Pony and Lord Tirek(二维线段树+ODT)
Codeforces 题目传送门 & 洛谷题目传送门 一道难度 *3100 的 DS,而且被我自己搞出来了! 不过我终究还是技不如人,因为这是一个 \(n\log^2n\) + 大常数的辣鸡做 ...
- UVA 11297 线段树套线段树(二维线段树)
题目大意: 就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询 二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要 不同的处理方式,非叶子形成的 ...
- POJ2155 Matrix二维线段树经典题
题目链接 二维树状数组 #include<iostream> #include<math.h> #include<algorithm> #include<st ...
随机推荐
- 【UE4 C++ 基础知识】<15> 智能指针 TSharedPtr、UniquePtr、TWeakPtr、TSharedRef
基本概念 UE4 对 UObject 对象提供垃圾回收 UE4 对原生对象不提供垃圾回收,需要手动进行清理 方式 malloc / free new / delete new与malloc的区别在于, ...
- k8s replicaset controller分析(2)-核心处理逻辑分析
replicaset controller分析 replicaset controller简介 replicaset controller是kube-controller-manager组件中众多控制 ...
- BUAA SE 软件案例分析-CSDN
Q A 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 个人博客作业-软件案例分析 我在这个课程的目标是 系统地学习软件工程开发知识,掌握相关流程和技术,提升 ...
- BUAA-OO-最后单元总结
BUAA-OO-最后单元总结 经过一学期的魔鬼"折磨"后,OO课程终于要结束了!总体来说我对于作业的总体完成情况还是比较满意的,希望最后可以取得一个理想成绩. 一.第四单元架构设计 ...
- 计算机网络之传输层UDP协议
文章转自:https://blog.csdn.net/weixin_43914604/article/details/105453096 学习课程:<2019王道考研计算机网络> 学习目的 ...
- Celery Task(定时任务)及参数
celery beat 是一个调度器:它以常规的时间间隔开启任务,任务将会在集群中的可用节点上运行. 默认情况下,入口项是从 beat_schedule 设置中获取,但是自定义的存储也可以使用,例如在 ...
- ubuntn 一直循环登录界面 (卸载nvidia驱动)
由于在Ubuntu下安装了Nvidia显卡驱动后开机一直处于循环登录界面,密码输入正确也是进不去,然后就决定卸载Nvidia显卡驱动.首先是在能使用tty1登录的情况下,使用 $ sudo apt-g ...
- poj 2311 Cutting Game (SG)
题意: 有一张W*H的纸片. 每人每次可以横着撕或者竖着撕,先撕出1*1那一方胜. 数据范围: W and H (2 <= W, H <= 200) 思路: 很好抽象出游戏图的模型,用SG ...
- Centos 系统常用编译环境
centos编译环境配置 yum install -y autoconf make automake gcc gcc-c++
- SpringBoot2.x异步任务EnableAsync
1.springboot启动类里面使用@EnableAsync注解开启异步功能 @EnableAsync public class Demo001Application { public static ...