Python高阶之多线程锁机制
'''
1.多进程的优势:为了同步完成多项任务,通过提高资源使用效率来提高系统的效率。
2.查看线程数:threading.enumerate()函数便可以看到当前线程的数量。
3.查看当前线程的名字:threading.current_thread()可以看到当前线程的信息。
4.类可以继承 threading.Thread
'''
# import threading
# import time
#
# class CodingThread(threading.Thread):
# def run(self):
# for x in range(3):
# print('正在写脚本:%s'%threading.current_thread())
# time.sleep(1)
#
# class ModelThread(threading.Thread):
# def run(self):
# for x in range(3):
# print('正在创建模型:%s'%threading.current_thread())
# time.sleep(1)
#
# # 主线程入口
# def main():
# t1 = CodingThread()
# t2 = ModelThread()
#
# t1.start()
# t2.start()
#
#
# if __name__ == '__main__':
# main()
# 多线程共享全局变量的问题:
'''
多线程都是在同一个进程中运行的。因此在进程中的全局变量所有线程都是可共享的。
这就造成了一个问题,因为线程执行的顺序是无序的。有可能会造成数据错误。
'''
# import threading
# VALUES = 0
# 全局变量使用线程时,避免数据不出现乱序,则加上锁
# gLock = threading.Lock()
#
# def get_ticket():
# global VALUES
# # 加锁
# gLock.acquire()
# for x in range(100000):
# VALUES += 1
# # 解锁
# gLock.release()
# print('VALUES:%d' % VALUES)
#
# def main():
# for x in range(3):
# t = threading.Thread(target=get_ticket)
# t.start()
# 应该打印出来是: 100000,200000,300000
# 实际打印出来是: 100000,124976,224976
# 所有使用到threading.Lock
'''
加上锁后返回的值:
VALUES:100000
VALUES:200000
VALUES:300000
'''
# if __name__ == '__main__':
# main()
# Lock版本生产者和消费者模式:
'''
生产者和消费者模式是多线程开发中经常见到的一种模式。
生产者的线程专门用来生产一些数据,然后存放到一个中间的变量中。
消费者再从这个中间的变量中取出数据进行消费。
但是因为要使用中间变量,中间变量经常是一些全局变量,因此需要使用锁来保证数据完整性。
使用threading.Lock锁实现的“生产者与消费者模式”的一个例子:
'''
import threading
import random
import time
gMoney = 1000
glock = threading.Lock()
# 记录生产者生产的次数,达到10次就不再生产
gtime = 0
# 生产者
class Producer(threading.Thread):
def run(self):
global gMoney
global gtime
while True:
Money = random.randint(100,1000)
glock.acquire()
if gtime >= 10:
# 解锁返回
glock.release()
break
gMoney += Money
print('%s存入了%d元钱,还剩%d元钱'%(threading.current_thread(),Money,gMoney))
time.sleep(0.5)
gtime += 1
glock.release()
# 消费者
class Consumer(threading.Thread):
def run(self):
global gMoney
global gtime
while True:
Money = random.randint(100, 1000)
glock.acquire()
if gMoney > Money:
gMoney -= Money
print('%s消费了%d元钱,还剩%d元钱' % (threading.current_thread(), Money, gMoney))
time.sleep(0.5)
else:
# 如果钱不够了,有可能是已经超过了次数,这时候就判断一下
if gtime >= 10:
glock.release()
break
print('%s消费了%d元钱,还剩%d元钱,不足!!!' % (threading.current_thread(), Money, gMoney))
glock.release()
def main():
for x in range(3):
c1 = Consumer(name='消费者线程数%s'%x)
c1.start()
for x in range(5):
p1 = Producer(name='生产者线程数%s'%x)
p1.start()
if __name__ == '__main__':
main()
Python高阶之多线程锁机制的更多相关文章
- Python开发基础-Day30多线程锁机制
GIL(全局解释器锁) GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念,是为了实现不同线程对共享资源访问的互斥,才引入了GIL 在Cpython解释器 ...
- 用一个简单的例子来理解python高阶函数
============================ 用一个简单的例子来理解python高阶函数 ============================ 最近在用mailx发送邮件, 写法大致如 ...
- Python高阶函数_map/reduce/filter函数
本篇将开始介绍python高阶函数map/reduce/filter的用法,更多内容请参考:Python学习指南 map/reduce Python内建了map()和reduce()函数. 如果你读过 ...
- Python高阶函数及函数柯里化
1 Python高阶函数 接收函数为参数,或者把函数作为结果返回的函数为高阶函数. 1.1 自定义sort函数 要求:仿照内建函数sorted,自行实现一个sort函数.内建函数sorted函数是返回 ...
- python——高阶函数:高阶函数
python高阶函数 00初识高阶函数 一等公民 函数在python中是一等公民(First-Class Object),同样和变量一样,函数也是对象,只不过是可调用的对象,所以函数也可以作为一个普通 ...
- python高阶函数的使用
目录 python高阶函数的使用 1.map 2.reduce 3.filter 4.sorted 5.小结 python高阶函数的使用 1.map Python内建了map()函数,map()函数接 ...
- Python高阶用法总结
目录 1. lambda匿名函数 1.1 函数式编程 1.2 应用在闭包 2. 列表解析式 3. enumerate内建函数 4. 迭代器与生成器 4.1 迭代器 4.3 生成器 5. 装饰器 前言: ...
- python 高阶函数之filter
前文说到python高阶函数之map,相信大家对python中的高阶函数有所了解,此次继续分享python中的另一个高阶函数filter. 先看一下filter() 函数签名 >>> ...
- python 多线程锁机制
GIL(全局解释器锁) GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念,是为了实现不同线程对共享资源访问的互斥,才引入了GIL 在Cpython解释器 ...
随机推荐
- nvGraph-NVIDIA图形库
nvGraph-NVIDIA图形库 数据分析是高性能计算的不断增长的应用.许多高级数据分析问题可以称为图形问题.反过来,当今许多常见的图形问题也可以称为稀疏线性代数.这是nvGraph的动机,它利用G ...
- oracle表ddl审计
============= 表ddl 审计============== 1.table信息 SQL> select * from test; ID CUST_CREDIT_LIMIT TIME ...
- 关于JAVA的FlowLayout流动布局的换行问题--图形界面
我在网上寻找Java流动布局换行的方法,看了好久,也没有找到满意的答案. FlowLayout是流式布局,所以如果需要让换行有意义,就得锁定窗口的大小,否则随着窗口的伸缩,布局将被彻底打乱. 网上的方 ...
- 一篇文章通俗易懂的让你彻底理解 Java 注解
很多Java程序员,对Java的注解一知半解,更有甚者,有的人可能连注解是什么都不知道 本文我们用最简单的 demo , 最通俗最短的语言,带你了解注解到底是什么? 先来简单回顾一下基础,我们知道,J ...
- 【NX二次开发】Block UI 文本颜色/字体/宽度
属性说明 常规 类型 描述 BlockID String 控件ID Enable Logical 是否可操作 Group Logical 是否分 ...
- SpringBoot面试题 (史上最全、持续更新、吐血推荐)
文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...
- 支持向量机(SVM)之硬阈值
支持向量机 ( support vector machine, SVM ) 是使用超平面来对给定的 p 维向量进行分类的非概率二元线性分类器. 一.超平面 ( hyperplane ) 在一个p维的输 ...
- C++中封装和继承的访问权限
众所周知,C++面向对象的三大特性为:封装,继承和多态.下面我们就先对封装做一些简单的了解.封装是通过C++中的类来完成的,类是一种将抽象转换为用户定义类型的工具.类的定义如下: class circ ...
- Redis热点key优化
热门新闻事件或商品通常会给系统带来巨大的流量,对存储这类信息的Redis来说却是一个巨大的挑战.以Redis Cluster为例,它会造成整体流量的不均知,个别节点出现OPS过大的情况,极端情况下热点 ...
- 12、elk的使用(2)
12.8.收集日志: 因为logstash安装在从节点上,所以这里收集的主要是从节点上的服务日志: 1.收集系统日志: (1)配置文件: vim /etc/logstash/conf.d/system ...