题解 \(by\;zj\varphi\)

直接贪心模拟即可,对于每个点,如果它未被覆盖,直接在这覆盖一次。

每个黑点只会被扫一次,所以总复杂度为 \(\mathcal O\rm (nm)\)

Code
%: pragma GCC optimize("O9")
%: pragma GCC optimize("inline")
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf,OPUT[100];
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++;
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=getchar();
while(!isdigit(ch)) {if (ch=='-') f=0;ch=getchar();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
x=f?x:-x;
}
template<typename T>inline void print(T x,char t) {
if (x<0) putchar('-'),x=-x;
if (!x) return putchar('0'),(void)putchar(t);
ri cnt(0);
while(x) OPUT[p(cnt)]=x%10,x/=10;
for (ri i(cnt);i;--i) putchar(OPUT[i]^48);
return (void)putchar(t);
}
}
using IO::read;using IO::print;
namespace nanfeng{
#define node(x,y) (node){x,y}
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
static const int N=1e3+7;
char s[N];
int mt[N][N],mxx,mxy,mn,cnt,T,n,m,a,b,fg;
struct node{int x,y;}pnt[N*N];
inline int check(int x,int y) {
for (ri i(1);i<=cnt;p(i)) {
int cx=x+pnt[i].x,cy=y+pnt[i].y;
if (cx<1||cx>n||cy<1||cy>m) return 0;
if (!mt[cx][cy]) return 0;
mt[cx][cy]=0;
}
return 1;
}
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nanfeng.out","w",stdout);
read(T);
for (ri z(1);z<=T;p(z)) {
read(n),read(m),read(a),read(b);
cnt=fg=0;
mxx=INT_MAX,mxy=INT_MAX;
for (ri i(1);i<=n;p(i)) {
scanf("%s",s+1);
for (ri j(1);j<=m;p(j)) mt[i][j]=(s[j]=='x');
}
for (ri i(1);i<=a;p(i)) {
scanf("%s",s+1);
for (ri j(1);j<=b;p(j))
if (s[j]=='x') {
pnt[p(cnt)]=node(i,j);
if (i<mxx) mxx=i,mxy=j,mn=cnt;
else if (i==mxx) if (j<mxy) mxy=j,mn=cnt;
}
}
if (!cnt) {puts("No");continue;}
for (ri i(1);i<=cnt;p(i)) {
if (mn==i) continue;
pnt[i].x-=pnt[mn].x,pnt[i].y-=pnt[mn].y;
}
pnt[mn].x=pnt[mn].y=0;
for (ri i(1);i<=n&&!fg;p(i))
for (ri j(1);j<=m&&!fg;p(j))
if (mt[i][j]) if (!check(i,j)) fg=1,puts("No");
if (fg) continue;
puts("Yes");
}
return 0;
}
}
int main() {return nanfeng::main();}

NOIP 模拟 $28\; \rm 遗忘之祭仪$的更多相关文章

  1. NOIP 模拟 $28\; \rm 割海成路之日$

    题解 \(by\;zj\varphi\) 用两个集合分别表示 \(1\) 边联通块,\(1,2\) 边联通块 . \(\rm son_x\) 表示当前节点通过 \(3\) 类边能到的 \(2\) 联通 ...

  2. NOIP 模拟 $28\; \rm 客星璀璨之夜$

    题解 \(by\;zj\varphi\) 概率与期望,考虑 \(\rm dp\) 设 \(dp_{i,j}\) 为消除 \(i-j\) 这一段行星的期望,转移: 枚举 \(k\) 为当前状态下第一个撞 ...

  3. NOIP模拟 1

    NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. #   用  户  名   ...

  4. 20190902+0903合集-NOIP模拟

    一直没时间写QwQ 于是补一下. Day 1 晚饭吃的有点恶心…… $1s\,2s\,5s$ 还开 -O2 ?? 有点恐怖. T1 猛的一想: 把外面设成一个点, 向入口连一条权为排队时间的边 从出口 ...

  5. 2021.5.22 noip模拟1

    这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...

  6. NOIP模拟3

    期望得分:30+90+100=220 实际得分:30+0+10=40 T1智障错误:n*m是n行m列,硬是做成了m行n列 T2智障错误:读入三个数写了两个%d T3智障错误:数值相同不代表是同一个数 ...

  7. 7.22 NOIP模拟7

    又是炸掉的一次考试 T1.方程的解 本次考试最容易骗分的一道题,但是由于T2花的时间太多,我竟然连a+b=c都没判..暴力掉了40分. 首先a+b=c,只有一组解. 然后是a=1,b=1,答案是c-1 ...

  8. 20190725 NOIP模拟8

    今天起来就是虚的一批,然后7.15开始考试,整个前半个小时异常的困,然后一看题,T1一眼就看出了是KMP,但是完了,自己KMP的打法忘的一干二净,然后开始打T2,T2肝了一个tarjan点双就扔上去了 ...

  9. 5.23考试总结(NOIP模拟2)

    5.23考试总结(NOIP模拟2) 洛谷题单 看第一题第一眼,不好打呀;看第一题样例又一眼,诶,我直接一手小阶乘走人 然后就急忙去干T2T3了 后来考完一看,只有\(T1\)骗到了\(15pts\)[ ...

随机推荐

  1. centos安装svn,centos客户端运用svn

    场景:   操作如下: 搭建svn服务器:192.168.43.130 1.安装subversion 2.创建本地仓库 mkdir  /haha/svn/something svnadmin  cre ...

  2. Java 在Word中创建邮件合并模板并合并文本和图片

    Word里面的邮件合并功能是一种可以快速批量操作同类型数据的方式,常见的如数据填充.打印等.其中必不可少的步骤包括用于填充的模板文档.填充的数据源以及实现邮件合并的功能.下面,通过Java程序展示如何 ...

  3. MIT6.828 Lab4 Preemptive Multitasking(下)

    Lab4 Preemptive Multitasking(下) lab4的第二部分要求我们实现fork的cow.在整个lab的第一部分我们实现了对多cpu的支持和再多系统环境中的切换,但是最后分析的时 ...

  4. C语言:位运算符

    异或        ^     两个二进制位相同结果为0:不相同结果为1              1^1=0    1^0=1   0^1=1  0^0=1 按位或    |      两个二进制位 ...

  5. 电脑通过WIFI连接手机ADB

    1.搜索adb wifi 2.安装并开启:根据提示 3.电脑:adb connect 192.168.1.134 a安装ADB TOOLS b安装ADB DRIVER c将ADB TOOLS复制到c: ...

  6. C语言入门思路

    C语言编程入门 0.数学中的常数在编程语言中称为常量,是一直不变的.如1,2,'a',"abc",3456,34.56等1.变量:类似于数学中的未知数.实际上就是指可用内存的一块区 ...

  7. navicat for sqlserver 注册过程

    1.安装原软件,不要打开软件2.将Navicat_Keygen_Patch_v3.4_By_DFoX_URET复制到软件安装位置,运行3.选择navicat v12 products:SQL Serv ...

  8. c++中的静态成员

    引言 有时候需要类的一些成员与类本身相关联,而不是与类的每个对象相关联.比如类的所有对象都要共享的变量,这个时候我们就要用到类的静态成员. 声明类的静态成员 声明静态成员的方法是使用static关键字 ...

  9. 实验 2 Scala 编程初级实践

    实验 2 Scala 编程初级实践 一.实验目的 1.掌握 Scala 语言的基本语法.数据结构和控制结构: 2.掌握面向对象编程的基础知识,能够编写自定义类和特质: 3.掌握函数式编程的基础知识,能 ...

  10. P6753 [BalticOI 2013 Day1] Ball Machine

    P6753 [BalticOI 2013 Day1] Ball Machine 题意 给你一个树,每次从根节点放一个求,如果其子节点有空这个球会向下滚,若有多个节点为空则找儿子中以子树内编号的最小值为 ...