题意:

      给你一个n*m的矩阵<每个格子不是'F'就是'R'>,让你找一个最大的'F'矩阵,输出他的面积*3。

思路:

      比较经典的题目了,现在想起来比较好想,以前的话想着很费劲,最早先用瓶颈法在杭电上过了一个数据范围比较小的,今天的这个目测瓶颈法过不去,瓶颈法的时间复杂度是O(n^3)的,今天的这个我们可以用另外一个也是比较经典的一个方法,时间复杂度是O(n^2),思路是我们可以枚举每个矩形向上延伸的最大距离,然后把这个最大距离(竖线)像左的最大平移距离和向右的最大平移距离求出来,高H[i][j],左最大距离L[i][j] ,右最大平移距离R[i][j],然后当前答案是 now = (L[i][j] + R[i][j]
- 1) * H[i][j].这个很容易理解,每一个最大的子举行一定是某一个点的最长向上距离*左右活动范围得来的。然后对于更新的时候是这样的:

如果当前是'R'那么H[i][j] = 0 ,否则H[i][j] = H[i-1][j] + 1

如果当前是'R'那么L[i][j] = 0 ,否则如果当前的上一个是'R'或者当前是第一行,那么L[i][j] = ls ,否则L[i][j] = min(ls ,L[i-1][j]);ls 是当前行前面的最大延续长度,更新R[i][j]的时候类似,具体细节看代码。

#include<stdio.h>

#include<string.h>

#define N 1000 + 5

int map[N][N];

int H[N][N] ,L[N][N] ,R[N][N];

int minn(int x ,int y)

{

   return x < y ? x : y;

}

int maxx(int x ,int y)

{

  return x > y ? x : y;

}

int main()

{

   int t ,n ,m ,i ,j;

   int ls ,rs;

   char str[5];

   scanf("%d" ,&t);

   while(t--)

   {

      scanf("%d %d" ,&n ,&m);

      for(i = 1 ;i <= n ;i ++)

      for(j = 1 ;j <= m ;j ++)

      {

         scanf("%s" ,str);

         map[i][j] = (str[0] == 'F');

      }

      int Ans = 0;

      memset(H ,0 ,sizeof(H));

      memset(L ,0 ,sizeof(L));

      memset(R ,0 ,sizeof(R));

      for(i = 1 ;i <= n ;i ++)

      {

          for(j = 1 ;j <= m ;j ++)

          if(map[i][j]) H[i][j] = H[i-1][j] + 1;

          else H[i][j] = 0;

          ls = 0;

          for(j = 1 ;j <= m ;j ++)

          {

             map[i][j] ? ls ++ : ls = 0;

             map[i][j] ? ((i == 1 || !map[i-1][j]) ? L[i][j] = ls : L[i][j] = minn(ls ,L[i-1][j])) : L[i][j] = 0;

          }

          rs = 0;

          for(j = m ;j >= 1 ;j --)

          {

            map[i][j] ? rs ++ : rs = 0;

            map[i][j] ? ((i == 1 || !map[i-1][j]) ? R[i][j] = rs : R[i][j] = minn(rs ,R[i-1][j])) : R[i][j] = 0;

            if(map[i][j])

            {

               int now = (L[i][j] + R[i][j] - 1) * H[i][j];

               if(Ans < now) Ans = now;

            }

          }

      }

      printf("%d\n" ,Ans * 3);

   }

   return 0;

}

          

LA3029最大子矩阵的更多相关文章

  1. ACM 中 矩阵数据的预处理 && 求子矩阵元素和问题

            我们考虑一个$N\times M$的矩阵数据,若要对矩阵中的部分数据进行读取,比如求某个$a\times b$的子矩阵的元素和,通常我们可以想到$O(ab)$的遍历那个子矩阵,对它的各 ...

  2. [BZOJ1127][POI2008] KUP子矩阵

    Description 给一个n*n的地图,每个格子有一个价格,找一个矩形区域,使其价格总和位于[k,2k] Input 输入k n(n<2000)和一个n*n的地图 Output 输出矩形的左 ...

  3. 【SCOI2005】 最大子矩阵 BZOJ 1084

    Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第一行为n,m,k(1≤n≤100,1≤m≤2 ...

  4. 一个N*M的矩阵,找出这个矩阵中所有元素的和不小于K的面积最小的子矩阵

    题目描述: 一个N*M的矩阵,找出这个矩阵中所有元素的和不小于K的面积最小的子矩阵(矩阵中元素个数为矩阵面积) 输入: 每个案例第一行三个正整数N,M<=100,表示矩阵大小,和一个整数K 接下 ...

  5. HDU1559 最大子矩阵 (二维树状数组)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1559 最大子矩阵 Time Limit: 30000/10000 MS (Java/Others)  ...

  6. bzoj1057: [ZJOI2007]棋盘制作--最大子矩阵

    既然要求最大01子矩阵,那么把应该为0的位置上的数取反,这样就变成求最大子矩阵 最大子矩阵可以用单调栈 #include<stdio.h> #include<string.h> ...

  7. hdu 1559 最大子矩阵

    最大子矩阵 Time Limit: 30000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  8. NOIP2014pj子矩阵[搜索|DP]

    题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素 ...

  9. openjudge1768 最大子矩阵[二维前缀和or递推|DP]

    总时间限制:  1000ms 内存限制:  65536kB 描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵. 比如,如下4 * 4的 ...

随机推荐

  1. 剑指 Offer 24. 反转链表

    剑指 Offer 24. 反转链表 Offer 24 题目描述: 常规解法 本题的解法很常规,没有其他特别的坑,只需要将链表反转即可. package com.walegarrett.offer; / ...

  2. ASP.NET Core重复读取Request.Body

    //HttpContext context.Request.EnableRewind(); //创建缓冲区存放Request.Body的内容,从而允许反复读取Request.Body的Stream u ...

  3. springboot整合持久层技术(mysql驱动问题)

    java.sql.SQLException: The server time zone value '�й���׼ʱ��' is unrecognized or represents more tha ...

  4. 从sql语句的角度解刨SqlServer插入语句的并发问题

    今天收到一个小学弟的求助,数据库插入偶尔重复,怎么在sql语句上进行解决. Q:学长,我导入excel数据的操作,平时使用好好的,怎么突然发生插入重复的问题? A:你是使用哪个ORM框架进行操作的? ...

  5. JAVA常用的集合转换

    在Java应用中进行集合对象间的转换是非常常见的事情,有时候在处理某些任务时选择一种好的数据结构往往会起到事半功倍的作用,因此熟悉每种数据结构并知道其特点对于程序员来说是非常重要的,而只知道这些是不够 ...

  6. Git常用命名

    文字整理: git config - - 可以配置git的参数,可以使用 git config --list查看已经配置的git参数. 其中有三个级别的保存位置, –system(本系统) –glob ...

  7. 前端性能监控之performance

    如果我们想要对一个网页进行性能监控,那么使用window.performance是一个比较好的选择. 我们通过window.performance可以获取到用户访问一个页面的每个阶段的精确时间,从而对 ...

  8. 仿String()构造器函数 【总结】

    需求 实现以下方法: 控制台结果: 需求分析: 首先确定new调用的this和什么对象绑定,如果跟默认返回的对象绑定肯定做不到 [ ] 这样的访问,所以要在构造器内部返回一个包装过的数组 1.leng ...

  9. c/s应用程序自动更新组件GeneralUpdate3.2.1发布

    一.组件简介 GeneralUpdate是基于.net standard 开发的一款(c/s应用)自动升级程序.该组件将更新的核心部分抽离出来方便应用于多种项目当中目前适用于wpf,控制台应用,win ...

  10. JAVA题目:小芳的妈妈每天给她2.5元,她都会存起来,但是,每当这一天是存钱的第五题或者5的倍数的话,她都会去用掉6块钱。 问:至少经过多少天可以存到100块?

    1 /*题目:小芳的妈妈每天给她2.5元,她都会存起来, 2 但是,每当这一天是存钱的第五题或者5的倍数的话, 3 她都会去用掉6块钱. 4 问:至少经过多少天可以存到100块? 5 */ 6 /*分 ...