1.为什么数据库id自增和uuid不适合分布式id

  • id自增:当数据量庞大时,在数据库分库分表后,数据库自增id不能满足唯一id来标识数据;因为每个表都按自己节奏自增,会造成id冲突,无法满足需求。              分库分表:分表就是把一个表的数据放到多个表中,将一个库的数据拆分到多个库中
  • uuid:UUID长且无序;主键应越短越好,无序会造成每一次UUID数据的插入都会对主键地城的b+树进行很大的修改  

    在时间上,1)uuid由于占用的内存更大,所以查询、排序速度会相对较慢;2)在存储过程中,自增长id由于主键的值是顺序的,所以InnoDB把每一条记录都存储在上一条记录的后面。当达到页的最大填充因子时(innodb默认的最大填充因子为页大小的15/16,留出部分空间用于以后修改),下一条记录就会写入新的页面中。一旦数据按照这种方式加载,主键页就会被顺序的记录填满。而对于uuid,由于后面的值不一定比前面的值大,所以InnoDB并不能总是把新行插入的索引的后面,而是需要为新行寻找合适的位置(通常在已有行之间),并分配空间

SnowFlake雪花算法

SnowFlake算法是Twitter设计的一个可以在分布式系统中生成唯一的ID的算法,它可以满足Twitter每秒上万条消息ID分配的请求,这些消息ID是唯一的且有大致的递增顺序。

1位标识部分:在java中由于long的最高位是符号位,正数是0,负数是1,一般生成的ID为正数,所以为0;
41位时间戳部分:这个是毫秒级的时间,一般实现上不会存储当前的时间戳,而是时间戳的差值(当前时间-固定的开始时间),这样可以使产生的ID从更小值开始;41位的时间戳可以使用69年,(1L<< 41) / (1000L * 60 * 60 * 24 * 365) = 69年;
10位节点部分:Twitter实现中使用前5位作为数据中心标识,后5位作为机器标识,可以部署1024个节点;
12位序列号部分:支持同一毫秒内同一个节点可以生成4096个ID。
整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞,并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右

package utils;

import java.lang.management.ManagementFactory;
import java.net.InetAddress;
import java.net.NetworkInterface; /**
* <p>名称:IdWorker.java</p>
* <p>描述:分布式自增长ID</p>
* <pre>
* Twitter的 Snowflake JAVA实现方案
* </pre>
* 核心代码为其IdWorker这个类实现,其原理结构如下,我分别用一个0表示一位,用—分割开部分的作用:
* 1||0---0000000000 0000000000 0000000000 0000000000 0 --- 00000 ---00000 ---000000000000
* 在上面的字符串中,第一位为未使用(实际上也可作为long的符号位),接下来的41位为毫秒级时间,
* 然后5位datacenter标识位,5位机器ID(并不算标识符,实际是为线程标识),
* 然后12位该毫秒内的当前毫秒内的计数,加起来刚好64位,为一个Long型。
* 这样的好处是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和机器ID作区分),
* 并且效率较高,经测试,snowflake每秒能够产生26万ID左右,完全满足需要。
* <p>
* 64位ID (42(毫秒)+5(机器ID)+5(业务编码)+12(重复累加))
*
* @author Polim
*/
public class IdWorker { // 时间起始标记点,作为基准,一般取系统的最近时间(一旦确定不能变动)
private final static long twepoch = 1288834974657L;
// 机器标识位数
private final static long workerIdBits = 5L;
// 数据中心标识位数
private final static long datacenterIdBits = 5L;
// 机器ID最大值
private final static long maxWorkerId = -1L ^ (-1L << workerIdBits);
// 数据中心ID最大值
private final static long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
// 毫秒内自增位
private final static long sequenceBits = 12L;
// 机器ID偏左移12位
private final static long workerIdShift = sequenceBits;
// 数据中心ID左移17位
private final static long datacenterIdShift = sequenceBits + workerIdBits;
// 时间毫秒左移22位
private final static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; private final static long sequenceMask = -1L ^ (-1L << sequenceBits);
/* 上次生产id时间戳 */
private static long lastTimestamp = -1L;
// 0,并发控制
private long sequence = 0L; private final long workerId;
// 数据标识id部分
private final long datacenterId; public IdWorker(){
this.datacenterId = getDatacenterId(maxDatacenterId);
this.workerId = getMaxWorkerId(datacenterId, maxWorkerId);
}
/**
* @param workerId
* 工作机器ID
* @param datacenterId
* 序列号
*/
public IdWorker(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
}
/**
* 获取下一个ID
*
* @return
*/
public synchronized long nextId() {
long timestamp = timeGen();
if (timestamp < lastTimestamp) {
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
} if (lastTimestamp == timestamp) {
// 当前毫秒内,则+1
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
// 当前毫秒内计数满了,则等待下一秒
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0L;
}
lastTimestamp = timestamp;
// ID偏移组合生成最终的ID,并返回ID
long nextId = ((timestamp - twepoch) << timestampLeftShift)
| (datacenterId << datacenterIdShift)
| (workerId << workerIdShift) | sequence; return nextId;
} private long tilNextMillis(final long lastTimestamp) {
long timestamp = this.timeGen();
while (timestamp <= lastTimestamp) {
timestamp = this.timeGen();
}
return timestamp;
} private long timeGen() {
return System.currentTimeMillis();
} /**
* <p>
* 获取 maxWorkerId
* </p>
*/
protected static long getMaxWorkerId(long datacenterId, long maxWorkerId) {
StringBuffer mpid = new StringBuffer();
mpid.append(datacenterId);
String name = ManagementFactory.getRuntimeMXBean().getName();
if (!name.isEmpty()) {
/*
* GET jvmPid
*/
mpid.append(name.split("@")[0]);
}
/*
* MAC + PID 的 hashcode 获取16个低位
*/
return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1);
} /**
* <p>
* 数据标识id部分
* </p>
*/
protected static long getDatacenterId(long maxDatacenterId) {
long id = 0L;
try {
InetAddress ip = InetAddress.getLocalHost();
NetworkInterface network = NetworkInterface.getByInetAddress(ip);
if (network == null) {
id = 1L;
} else {
byte[] mac = network.getHardwareAddress();
id = ((0x000000FF & (long) mac[mac.length - 1])
| (0x0000FF00 & (((long) mac[mac.length - 2]) << 8))) >> 6;
id = id % (maxDatacenterId + 1);
}
} catch (Exception e) {
System.out.println(" getDatacenterId: " + e.getMessage());
}
return id;
}
}

分布式系统为什么不用自增id,要用雪花算法生成id???的更多相关文章

  1. 雪花算法生成ID

    前言我们的数据库在设计时一般有两个ID,自增的id为主键,还有一个业务ID使用UUID生成.自增id在需要分表的情况下做为业务主键不太理想,所以我们增加了uuid作为业务ID,有了业务id仍然还存在自 ...

  2. 分布式雪花算法获取id

    实现全局唯一ID 一.采用主键自增 最常见的方式.利用数据库,全数据库唯一. 优点: 1)简单,代码方便,性能可以接受. 2)数字ID天然排序,对分页或者需要排序的结果很有帮助. 缺点: 1)不同数据 ...

  3. 基于雪花算法生成分布式ID(Java版)

    SnowFlake算法原理介绍 在分布式系统中会将一个业务的系统部署到多台服务器上,用户随机访问其中一台,而之所以引入分布式系统就是为了让整个系统能够承载更大的访问量.诸如订单号这些我们需要它是全局唯 ...

  4. 雪花算法生成全局唯一ID

    系统中某些场景少不了全局唯一ID的使用,来保证数据的唯一性.除了通过数据库自带的自增id来保证 id 的唯一性,通常为了保证的数据的可移植性会选择通过程序生成全局唯一 id.百度了不少php相关的生成 ...

  5. 分布式id的生成方式——雪花算法

    雪花算法是twitter开源的一个算法. 由64位0或1组成,其中41位是时间戳,10位工作机器id,12位序列号,该类通过方法nextID()实现id的生成,用Long数据类型去存储. 我们使用id ...

  6. php实现雪花算法(ID递增)

    雪花算法简单描述: 最高位是符号位,始终为0,不可用. 41位的时间序列,精确到毫秒级,41位的长度可以使用69年.时间位还有一个很重要的作用是可以根据时间进行排序. 10位的机器标识,10位的长度最 ...

  7. 分布式ID生成器 snowflake(雪花)算法

    在springboot的启动类中引入 @Bean public IdWorker idWorkker(){ return new IdWorker(1, 1); } 在代码中调用 @Autowired ...

  8. 雪花算法生成分布式ID

    分布式主键ID生成方案 分布式主键ID的生成方案有以下几种: 数据库自增主键 缺点: 导入旧数据时,可能会ID重复,导致导入失败 分布式架构,多个Mysql实例可能会导致ID重复 UUID 缺点: 占 ...

  9. 分布式id生成器,雪花算法IdWorker

    /** * <p>名称:IdWorker.java</p> * <p>描述:分布式自增长ID</p> * <pre> * Twitter的 ...

随机推荐

  1. robot_framewok自动化测试--(5)Screenshot 库

    Screenshot 库 Scrennshot 同样为 Robot Framework 标准类库,我们只将它提供的其它中一个关键字"TakeScreenshot",它用于截取到当前 ...

  2. 03 | 变量的解构赋值 | es6

    变量的解构赋值 数组的解构赋值 基本用法 ES6 允许按照一定模式,从数组和对象中提取值,对变量进行赋值,这被称为解构(Destructuring). 以前,为变量赋值,只能直接指定值. let a ...

  3. Effective Python(3)- 了解 bytes 与 str 的区别

    Python 有两种类型可以表示字符序列 bytes:实例包含的是原始数据,即 8 位的无符号值(通常按照 ASCII 编码标准来显示) str:实例包含的是 Unicode 码点(code poin ...

  4. 暑假算法练习Day2

    第二天啦!大家一起冲冲冲!! 1004 成绩排名 (20 分) 读入 n(>0)名学生的姓名.学号.成绩,分别输出成绩最高和成绩最低学生的姓名和学号. 输入格式: 每个测试输入包含 1 个测试用 ...

  5. Duboo整合SpringBoot超级详细例子(附源码)

    dubbo3.0整合SpringBoot例子 dubbo新版本(3.0以上)在相对于 dubbo 旧版本(2.5.2.6.2.7),有很多的不相同的地方. 官方文档也说了新版本的特性: https:/ ...

  6. [bzoj4777]Switch Grass

    结论:最短路径一定是单独的一条边且在最小生成树上,可以用反证法证明.那么求出最小生成树,对于每一个点建立一棵权值线段树,再对每一个权值线段树上的叶子节点开一个multiset,维护所有儿子中该种颜色的 ...

  7. Assassin暗杀者-自用短小精悍的webshell管理工具分享

    Assassin Assassin是一款精简的基于命令行的webshell管理工具,它有着多种payload发送方式和编码方式,以及精简的payload代码,使得它成为隐蔽的暗杀者,难以被很好的防御. ...

  8. 调试:'Object reference note set to an instance of an object.'

    今天调试代码遇到一个奇怪的问题,每次调试到 var files = new List<string>()这一行代码,总是报错:System.NullReferenceException: ...

  9. 洛谷 P4900 - 食堂(推式子)

    洛谷题面传送门 首先推式子: \[\begin{aligned} ans&=\sum\limits_{i=A}^B\sum\limits_{j=1}^i\{\dfrac{i}{j}\} \en ...

  10. Codeforces 986E - Prince's Problem(树上前缀和)

    题面传送门 题意: 有一棵 \(n\) 个节点的树,点上有点权 \(a_i\),\(q\) 组询问,每次询问给出 \(u,v,w\),要求: \(\prod\limits_{x\in P(u,v)}\ ...