Many areas of Computer Science use simple, abstract domains for both analytical and empirical studies. For example, an early AI study of planning and robotics (STRIPS) used a block world in which a robot arm performed tasks involving the manipulation of blocks.

  In this problem you will model a simple block world under certain rules and constraints. Rather than determine how to achieve a specified state, you will “program” a robotic arm to respond to a limited set of commands.

  The problem is to parse a series of commands that instruct a robot arm in how to manipulate blocks that lie on a flat table. Initially there are n blocks on the table (numbered from 0 to n−1) with block bi adjacent to block bi+1 for all 0≤ i < n−1 as shown in the diagram below:

Initial Blocks World

  The valid commands for the robot arm that manipulates blocks are:

  • move a onto b

  where a and b are block numbers, puts block a onto block b after returning any blocks that are stacked on top of blocks a and b to their initial positions.

  • move a over b

  where a and b are block numbers, puts block a onto the top of the stack containing block b, after returning any blocks that are stacked on top of block a to their initial positions.

  • pile a onto b

  where a and b are block numbers, moves the pile of blocks consisting of block a, and any blocks that are stacked above block a, onto block b. All blocks on top of block b are moved to their initial positions prior to the pile taking place. The blocks stacked above block a retain their order when moved.

  • pile a over b

  where a and b are block numbers, puts the pile of blocks consisting of block a, and any blocks that are stacked above block a, onto the top of the stack containing block b. The blocks stacked above block a retain their original order when moved.

  • quit

  terminates manipulations in the block world.

  Any command in which a = b or in which a and b are in the same stack of blocks is an illegal command. All illegal commands should be ignored and should have no affect on the configuration of blocks.

Input

  The input begins with an integer n on a line by itself representing the number of blocks in the block world. You may assume that 0 < n < 25.

  The number of blocks is followed by a sequence of block commands, one command per line. Your program should process all commands until the quit command is encountered.

  You may assume that all commands will be of the form specified above. There will be no syntactically incorrect commands.

Output

  The output should consist of the final state of the blocks world. Each original block position numbered i (0≤ i < n where n is the number of blocks) should appear followed immediately by a colon. If there is at least a block on it, the colon must be followed by one space, followed by a list of blocks that appear stacked in that position with each block number separated from other block numbers by a space. Don’t put any trailing spaces on a line.

  There should be one line of output for each block position (i.e., n lines of output where n is the integer on the first line of input).

Sample Input

10
move 9 onto 1
move 8 over 1
move 7 over 1
move 6 over 1
pile 8 over 6
pile 8 over 5
move 2 over 1
move 4 over 9
quit

Sample Output

0: 0
1: 1 9 2 4
2:
3: 3
4:
5: 5 8 7 6
6:
7:
8:
9:

HINT

  这个要化繁为简,找到各个指令的共同点。对比分析可以直到,只有“onto”和“move”指令才需要清楚上方的木块,因此只需要判断这两个即可。其他的情况可以全部当作从一个堆上转移到另一个堆上面。这样主要的函数就完成了。剩下的就是输出函数很简单不解释。另外题目中涉及大量数组末尾元素的添加和删除,因此使用vector合适。由题意我们需要知道每一个方块的位置,因此增加了坐标数组来时刻记录方块的坐标。

Accepted

#include<algorithm>
#include <iostream>
#include<vector>
#include<string>
using namespace std; vector<int>block[30];
int id[30][2]; //坐标数组 void print(int n) //输出结果
{
for (int i = 0;i < n;i++)
{
cout << i << ":";
for (int j = 0;j < block[i].size();j++)
cout << " " << block[i][j];
cout << endl;
}
} void a2b(int a, int b) //从一个堆移动到另一个堆
{
int m = id[a][0]; //a的坐标(m,n)
int n = id[a][1];
int p = id[b][0]; //b的横坐标
for (int i = n;i < block[m].size();i++)
{
int t = block[m][i];
id[t][0] = p;id[t][1] = block[p].size(); //更新坐标
block[p].push_back(t); //将每一个元素一次添加到另一个堆的顶部
}
while (n != block[m].size())block[m].pop_back();//添加完成后删除原来堆上的木块,相当于”移动“
} void blockclear(int a) //归为函数
{
int m = id[a][0]; //a的坐标(m,n)
int n = id[a][1];
for (int i = block[m].size()-1;i > n;i--)
{
int t = block[m][i];
block[t].clear();
block[t].push_back(t); //归为到原本的位置
id[t][0]= t;id[t][1] = 0; //更新坐标
block[m].pop_back(); //弹出
}
} int main()
{
int n,a,b;
cin >> n;
for (int i = 0;i < n;i++)
{
block[i].push_back(i);
id[i][0] = i;id[i][1] = 0;
}
string s1, s2;
while (cin>>s1&&s1!="quit") //判断终止
{
int ida, idb;
cin >> a >> s2 >> b;
if (id[a][0] == id[b][0])continue; //判断是否合法
else
{
if (s2 == "onto")blockclear(b); //当s2和s1分别为onto和move时此需要清楚木块上方
if (s1 == "move")blockclear(a);
a2b(a, b);
}
}
print(n); //打印
}

The Blocks Problem UVA - 101的更多相关文章

  1. UVa 101 The Blocks Problem Vector基本操作

    UVa 101 The Blocks Problem 一道纯模拟题 The Problem The problem is to parse a series of commands that inst ...

  2. 木块问题(The Blocks Problem,Uva 101)

    不定长数组:vector vector就是一个不定长数组.不仅如此,它把一些常用操作“封装”在了vector类型内部. 例如,若a是一个vector,可以用a.size( )读取它的大小,a.resi ...

  3. UVa 101 - The Blocks Problem(积木问题,指令操作)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  4. 【UVA - 101】The Blocks Problem(vector+模拟)

    The Blocks Problem Descriptions:(英语就不说了,直接上翻译吧) 初始时从左到右有n个木块,编号为0~n-1,要求实现下列四种操作: move a onto b: 把a和 ...

  5. Uva 101 -- the block problem

    Uva 101 the block problem 题目大意: 输入n,得到编号为0~n-1的木块,分别摆放在顺序排列编号为0~n-1的位置.现对这些木块进行操作,操作分为四种. 1.move a o ...

  6. POJ 1208 The Blocks Problem

    The Blocks Problem Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5397   Accepted: 231 ...

  7. The Blocks Problem(vector)

    题目链接:http://poj.org/problem?id=1208 The Blocks Problem Time Limit: 1000MS   Memory Limit: 10000K Tot ...

  8. UVa101 The Blocks Problem(不定长数组vector)

    The Blocks Problem 书上的一道例题,代码思路比较清晰,可以看懂. 相关知识: 若a是一个vector,则: a.size():读取它的大小 a.resize():改变大小 a.pus ...

  9. uva 101 POJ 1208 The Blocks Problem 木块问题 vector模拟

    挺水的模拟题,刚开始题目看错了,poj竟然过了...无奈.uva果断wa了 搞清题目意思后改了一下,过了uva. 题目要求模拟木块移动: 有n(0<n<25)快block,有5种操作: m ...

随机推荐

  1. 微信小程序:事件绑定

    小程序中绑定事件,通过bind关键字来实现.如bindinput,bindtap(绑定点击事件),bindchange等. 什么是事件 事件是视图层到逻辑层的通讯方式. 事件可以将用户的行为反馈到逻辑 ...

  2. docker08容器监控工具-WeaveScope

    容器监控工具WeaveScope 一 背景 在生成环境中k8s应用部署众多,需要一款可视化工具方便日常获知集群的实时状态,并为故障排查提供及时和准确的数据支持. weavescope支持docker和 ...

  3. 算法 - 链表操作思想 && case

    算法 - 链表操作题目套路 前面这一篇文章主要讲链表操作时候的实操解决方式,本文从本质讲解链表操作的元信息,学完后,再也不怕链表操作题目了. 1.链表的基本操作 链表的基本操作无外乎插入,删除,遍历 ...

  4. 后端程序员之路 30、webapi测试工具的一点想法

    有了webapi,对应的,也就要有各种语言的sdk,有时候,还要有一个好用的api测试工具.sdk和api测试工具在功能上有一些异同,有时候测试工具会直接基于sdk来制作. 它们通常包含: 1.htt ...

  5. 后端程序员之路 25、Redis Cluster

    官方教程和功能介绍: REDIS cluster-tutorial -- Redis中文资料站 -- Redis中国用户组(CRUG)http://www.redis.cn/topics/cluste ...

  6. 03.从0实现一个JVM语言系列之语法分析器-Parser-03月01日更新

    从0实现JVM语言之语法分析器-Parser 相较于之前有较大更新, 老朋友们可以复盘或者针对bug留言, 我会看到之后答复您! 源码github仓库, 如果这个系列文章对你有帮助, 希望获得你的一个 ...

  7. 【Saas-export项目】--项目整合(spring整合MVC)

    转: [Saas-export项目]--项目整合(spring整合MVC) 文章目录 Spring整合SpringMVC(export_web_manager子工程) (1)log4j.propert ...

  8. 剑指 Offer 39. 数组中出现次数超过一半的数字 + 摩尔投票法

    剑指 Offer 39. 数组中出现次数超过一半的数字 Offer_39 题目描述 方法一:使用map存储数字出现的次数 public class Offer_39 { public int majo ...

  9. HDOJ-3065(AC自动机+每个模板串的出现次数)

    病毒侵袭持续中 HDOJ-3065 第一个需要注意的是树节点的个数也就是tree的第一维需要的空间是多少:模板串的个数*最长模板串的长度 一开始我的答案总时WA,原因是我的方法一开始不是这样做的,我是 ...

  10. 数据库事务 ACID属性、数据库并发问题和四种隔离级别

    数据库事务 ACID属性.数据库并发问题和四种隔离级别 数据库事务 数据库事务是一组逻辑操作单元,使数据从一种状态变换到另一种状态 一组逻辑操作单元:一个或多个DML操作 事务处理原则 保证所有事务都 ...