The Blocks Problem UVA - 101
Many areas of Computer Science use simple, abstract domains for both analytical and empirical studies. For example, an early AI study of planning and robotics (STRIPS) used a block world in which a robot arm performed tasks involving the manipulation of blocks.
In this problem you will model a simple block world under certain rules and constraints. Rather than determine how to achieve a specified state, you will “program” a robotic arm to respond to a limited set of commands.
The problem is to parse a series of commands that instruct a robot arm in how to manipulate blocks that lie on a flat table. Initially there are n blocks on the table (numbered from 0 to n−1) with block bi adjacent to block bi+1 for all 0≤ i < n−1 as shown in the diagram below:

Initial Blocks World
The valid commands for the robot arm that manipulates blocks are:
- move a onto b
where a and b are block numbers, puts block a onto block b after returning any blocks that are stacked on top of blocks a and b to their initial positions.
- move a over b
where a and b are block numbers, puts block a onto the top of the stack containing block b, after returning any blocks that are stacked on top of block a to their initial positions.
- pile a onto b
where a and b are block numbers, moves the pile of blocks consisting of block a, and any blocks that are stacked above block a, onto block b. All blocks on top of block b are moved to their initial positions prior to the pile taking place. The blocks stacked above block a retain their order when moved.
- pile a over b
where a and b are block numbers, puts the pile of blocks consisting of block a, and any blocks that are stacked above block a, onto the top of the stack containing block b. The blocks stacked above block a retain their original order when moved.
- quit
terminates manipulations in the block world.
Any command in which a = b or in which a and b are in the same stack of blocks is an illegal command. All illegal commands should be ignored and should have no affect on the configuration of blocks.
Input
The input begins with an integer n on a line by itself representing the number of blocks in the block world. You may assume that 0 < n < 25.
The number of blocks is followed by a sequence of block commands, one command per line. Your program should process all commands until the quit command is encountered.
You may assume that all commands will be of the form specified above. There will be no syntactically incorrect commands.
Output
The output should consist of the final state of the blocks world. Each original block position numbered i (0≤ i < n where n is the number of blocks) should appear followed immediately by a colon. If there is at least a block on it, the colon must be followed by one space, followed by a list of blocks that appear stacked in that position with each block number separated from other block numbers by a space. Don’t put any trailing spaces on a line.
There should be one line of output for each block position (i.e., n lines of output where n is the integer on the first line of input).
Sample Input
10
move 9 onto 1
move 8 over 1
move 7 over 1
move 6 over 1
pile 8 over 6
pile 8 over 5
move 2 over 1
move 4 over 9
quit
Sample Output
0: 0
1: 1 9 2 4
2:
3: 3
4:
5: 5 8 7 6
6:
7:
8:
9:
HINT
这个要化繁为简,找到各个指令的共同点。对比分析可以直到,只有“onto”和“move”指令才需要清楚上方的木块,因此只需要判断这两个即可。其他的情况可以全部当作从一个堆上转移到另一个堆上面。这样主要的函数就完成了。剩下的就是输出函数很简单不解释。另外题目中涉及大量数组末尾元素的添加和删除,因此使用vector合适。由题意我们需要知道每一个方块的位置,因此增加了坐标数组来时刻记录方块的坐标。
Accepted
#include<algorithm>
#include <iostream>
#include<vector>
#include<string>
using namespace std;
vector<int>block[30];
int id[30][2]; //坐标数组
void print(int n) //输出结果
{
for (int i = 0;i < n;i++)
{
cout << i << ":";
for (int j = 0;j < block[i].size();j++)
cout << " " << block[i][j];
cout << endl;
}
}
void a2b(int a, int b) //从一个堆移动到另一个堆
{
int m = id[a][0]; //a的坐标(m,n)
int n = id[a][1];
int p = id[b][0]; //b的横坐标
for (int i = n;i < block[m].size();i++)
{
int t = block[m][i];
id[t][0] = p;id[t][1] = block[p].size(); //更新坐标
block[p].push_back(t); //将每一个元素一次添加到另一个堆的顶部
}
while (n != block[m].size())block[m].pop_back();//添加完成后删除原来堆上的木块,相当于”移动“
}
void blockclear(int a) //归为函数
{
int m = id[a][0]; //a的坐标(m,n)
int n = id[a][1];
for (int i = block[m].size()-1;i > n;i--)
{
int t = block[m][i];
block[t].clear();
block[t].push_back(t); //归为到原本的位置
id[t][0]= t;id[t][1] = 0; //更新坐标
block[m].pop_back(); //弹出
}
}
int main()
{
int n,a,b;
cin >> n;
for (int i = 0;i < n;i++)
{
block[i].push_back(i);
id[i][0] = i;id[i][1] = 0;
}
string s1, s2;
while (cin>>s1&&s1!="quit") //判断终止
{
int ida, idb;
cin >> a >> s2 >> b;
if (id[a][0] == id[b][0])continue; //判断是否合法
else
{
if (s2 == "onto")blockclear(b); //当s2和s1分别为onto和move时此需要清楚木块上方
if (s1 == "move")blockclear(a);
a2b(a, b);
}
}
print(n); //打印
}
The Blocks Problem UVA - 101的更多相关文章
- UVa 101 The Blocks Problem Vector基本操作
UVa 101 The Blocks Problem 一道纯模拟题 The Problem The problem is to parse a series of commands that inst ...
- 木块问题(The Blocks Problem,Uva 101)
不定长数组:vector vector就是一个不定长数组.不仅如此,它把一些常用操作“封装”在了vector类型内部. 例如,若a是一个vector,可以用a.size( )读取它的大小,a.resi ...
- UVa 101 - The Blocks Problem(积木问题,指令操作)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- 【UVA - 101】The Blocks Problem(vector+模拟)
The Blocks Problem Descriptions:(英语就不说了,直接上翻译吧) 初始时从左到右有n个木块,编号为0~n-1,要求实现下列四种操作: move a onto b: 把a和 ...
- Uva 101 -- the block problem
Uva 101 the block problem 题目大意: 输入n,得到编号为0~n-1的木块,分别摆放在顺序排列编号为0~n-1的位置.现对这些木块进行操作,操作分为四种. 1.move a o ...
- POJ 1208 The Blocks Problem
The Blocks Problem Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5397 Accepted: 231 ...
- The Blocks Problem(vector)
题目链接:http://poj.org/problem?id=1208 The Blocks Problem Time Limit: 1000MS Memory Limit: 10000K Tot ...
- UVa101 The Blocks Problem(不定长数组vector)
The Blocks Problem 书上的一道例题,代码思路比较清晰,可以看懂. 相关知识: 若a是一个vector,则: a.size():读取它的大小 a.resize():改变大小 a.pus ...
- uva 101 POJ 1208 The Blocks Problem 木块问题 vector模拟
挺水的模拟题,刚开始题目看错了,poj竟然过了...无奈.uva果断wa了 搞清题目意思后改了一下,过了uva. 题目要求模拟木块移动: 有n(0<n<25)快block,有5种操作: m ...
随机推荐
- FTPClient类的API
org.apache.commons.NET.ftp Class FTPClient类FTPClient java.lang.Object java.lang.Object继承 org.apache. ...
- 第46天学习打卡(四大函数式接口 Stream流式计算 ForkJoin 异步回调 JMM Volatile)
小结与扩展 池的最大的大小如何去设置! 了解:IO密集型,CPU密集型:(调优) //1.CPU密集型 几核就是几个线程 可以保持效率最高 //2.IO密集型判断你的程序中十分耗IO的线程,只要大于 ...
- kubernetes Pod亲和性
三种调度粘性,主要根据官方文档说明: NodeSelector(定向调度).NodeAffinity(Node亲和性).PodAffinity(Pod亲和性). 1. nodeSelecto ...
- HDOJ-6665(离散化+DFS求连通分量)
Calabash and Landlord HDOJ-6665 这里考察的是离散化的知识. 首先将所有的x坐标和y坐标放入两个数组中,然后对这两个数组进行排序.因为总共的坐标数就5个所以这两个数组的大 ...
- 干货满满-原来这才是hooks-React Hooks使用心得
序言 ---最后有招聘信息哦-React是一个库,它不是一个框架.用于构建用户界面的Javascript库.这里大家需要认识这一点.react的核心在于它仅仅是考虑了如何将dom节点更快更好更合适的渲 ...
- 漏洞复现-fastjson1.2.24-RCE
0x00 实验环境 攻击机:Win 10.Win Server2012 R2(公网环境,恶意java文件所在服务器) 靶机也可作为攻击机:Ubuntu18 (公网环境,docker ...
- golang——gRPC学习
1.获取gRPC 环境变量GOPATH的src目录下执行: git clone https://github.com/grpc/grpc-go.git google.golang.org/grpc g ...
- 为什么要从 Linux 迁移到 BSD2
OpenZFS on Linux,是项目的 Linux 部分,目前有 345 个活跃的贡献者,有超过 5600 个提交,而且几乎每天都有提交!一些世界上最大的 CDN 和数据存储服务在 FreeBSD ...
- springboot2.0全局异常处理,文件上传过大会导致,方法被执行两次,并且连接被重置
最后发现是内嵌tomcat也有文件大小限制,默认为2MB,我上传的是4MB,然后就炸了.在application.properties中添加server.tomcat.max-swallow-size ...
- Spring如何解决循环依赖
一.什么是循环依赖 多个bean之间相互依赖,形成了一个闭环. 比如:A依赖于B.B依赖于c.c依赖于A 通常来说,如果问spring容器内部如何解决循环依赖, 一定是指默认的单例Bean中,属性互相 ...