Solution -「AT 3913」XOR Tree
\(\mathcal{Description}\)
Link.
给定一棵树,边 \((u,v)\) 有边权 \(w(u,v)\)。每次操作可以使一条简单路径上的边权异或任意非负整数。求最少的操作次数使得所有边边权为 \(0\)。
\(n\le10^5\),\(w(u,v)<16\)。
\(\mathcal{Solution}\)
好妙的题 www。
定义一个点的点权 \(val_u\) 为其所有邻接边边权的异或和,即 \(val_u=\bigoplus_{(u,v)\in E}w(u,v)\)。一个至关重要的发现:所有边权为零等价于所有点权为零。
左推右是显然的;右推左,数归,考虑到叶子的边权等于点权,所以去掉所有叶子仍满足,得证。
再考虑一次操作,除路径两端的点,每个点有两条邻接边被异或了同一个数,所以这些点的点权不变!
非常 amazing 啊,这样一来问题就从树上剥离了——给一堆数,每次任选两个数异或同一个非负整数,求把这些数变成 \(0\) 的最小操作次数。
首先,若存在 \(u\not=v,val_u=val_v\),显然应该用一次操作处理掉它们。问题进一步转化——给一个值域在 \([0,16)\) 的集合(无重复元素),求把这些数变成 \(0\) 的最小操作次数。
鉴于 \(16=2^4\),考虑状压。设 \(f(S)\) 为处理集合 \(S\) 的最小操作次数。显然对于 \(S\) 内元素异或和不为 \(0\) 的 \(f(S)\),有 \(f(S)=+\infty\)。接下来想想对于 \(S\not=0\) 的转移:
\]
其中,前一项是暴力两两异或,后者即分别处理两个子集。
设 \(w(u,v)\) 的上限 \(W=2^k,~k\in\mathbb N\),复杂度 \(\mathcal O(3^k+n)\)。
\(\mathcal{Code}\)
#include <cstdio>
#include <cstring>
const int MAXN = 1e5, INF = 0x3f3f3f3f;
int n, val[MAXN + 5], cnt[16], f[1 << 16], xsum[1 << 16];
inline void chkmin ( int& a, const int b ) { if ( b < a ) a = b; }
int main () {
scanf ( "%d", &n );
for ( int i = 1, u, v, w; i < n; ++ i ) {
scanf ( "%d %d %d", &u, &v, &w );
val[u] ^= w, val[v] ^= w;
}
int ans = 0, S = 0;
for ( int i = 0; i < n; ++ i ) ++ cnt[val[i]];
for ( int i = 1; i < 16; ++ i ) {
S |= ( cnt[i] & 1 ) << i >> 1;
ans += cnt[i] >> 1;
}
for ( int i = 1; i < 1 << 15; ++ i ) {
for ( int j = 0; j < 15; ++ j ) {
if ( ( i >> j ) & 1 ) {
++ f[i], xsum[i] ^= j + 1;
}
}
-- f[i];
}
for ( int s = 0; s < 1 << 15; ++ s ) {
if ( xsum[s] ) continue;
for ( int t = s; ; t = ( t - 1 ) & s ) {
if ( ! xsum[t] && ! xsum[s ^ t] ) chkmin ( f[s], f[t] + f[s ^ t] );
if ( ! t ) break;
}
}
printf ( "%d\n", ans + f[S] );
return 0;
}
Solution -「AT 3913」XOR Tree的更多相关文章
- Solution -「CF 1060F」Shrinking Tree
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个点的树,反复随机选取一条边,合并其两端两点,新点编号在两端两点等概率选取.问每个点留到最后的概率. ...
- Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...
- Solution -「HDU 5498」Tree
\(\mathcal{Description}\) link. 给定一个 \(n\) 个结点 \(m\) 条边的无向图,\(q\) 次操作每次随机选出一条边.问 \(q\) 条边去重后构成生成 ...
- Solution -「Gym 102956F」Find the XOR
\(\mathcal{Description}\) Link. 给定 \(n\) 个点 \(m\) 条边的连通无向图 \(G\),边有边权.其中 \(u,v\) 的距离 \(d(u,v)\) ...
- Solution -「ARC 125F」Tree Degree Subset Sum
\(\mathcal{Description}\) Link. 给定含有 \(n\) 个结点的树,求非负整数对 \((x,y)\) 的数量,满足存在 \(\exist S\subseteq V ...
- Solution -「Gym 102798K」Tree Tweaking
\(\mathcal{Description}\) Link. 给定排列 \(\{p_n\}\),求任意重排 \(p_{l..r}\) 的元素后,将 \(\{p_n\}\) 依次插入二叉搜索树 ...
- Solution -「Gym 102759I」Query On A Tree 17
\(\mathcal{Description}\) Link. 给定一棵含 \(n\) 个结点的树,结点 \(1\) 为根,点 \(u\) 初始有点权 \(a_u=0\),维护 \(q\) 次 ...
- Solution -「国家集训队」「洛谷 P2619」Tree I
\(\mathcal{Description}\) Link. 给一个 \(n\) 个点 \(m\) 条边的带权无向图,边有权值和黑白颜色,求恰选出 \(K\) 条白边构成的最小生成树. ...
- Solution -「ARC 101E」「AT 4352」Ribbons on Tree
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个点的树,其中 \(2|n\),你需要把这些点两两配对,并把每对点间的路径染色.求使得所有边被染色的方案数 ...
随机推荐
- git -remote: Support for password authentication was removed on August 13, 2021
克隆代码时,报错: Support for password authentication was removed on August 13, 2021. Please use a personal ...
- 在CentOS7上安装 jq
安装EPEL源: yum install epel-release 安装完EPEL源后,可以查看下jq包是否存在: yum list jq 安装jq: yum -y install jq 命令参考资料 ...
- ajax 异步 提交 含文件的表单
1.前言 需求是使用 jquery 的 ajax 异步提交表单,当然,不是简单的数据,而是包含文件数据的表单.于是我想到了 new FormData() 的用法, 可是仍然提交失败,原来是ajax的属 ...
- Three.js 实现虎年春节3D创意页面
背景 虎年 春节将至,本文使用 React + Three.js 技术栈,实现趣味 3D 创意页面.本文包含的知识点主要包括:ShadowMaterial. MeshPhongMaterial 两种基 ...
- powershell基础知识
基本命令 我们先从最基本的命令入手,Windows Powershell命令中get类命令是很庞大的一个命令工具集合,而且get类命令也是Powershell中占比最大的. 1.Get-Alias G ...
- [STM32F10x] 标准库初始化问题
硬件:STM32F103C8T6 平台:ARM-MDK V5.11 STM32F系列提供的标准库都是通过结构体来初始化的.比如,以下是GPIO初始化的一个示例代码: GPIO_InitTypeDef ...
- mate10碎屏机当成小电脑使用尝试
1.屏碎了修起来300-400,自己动手至少也要260以上买个屏幕钱. 手机图案锁屏也不知道密码,给我手机的亲戚忘了.当年手机被车压弯了. 对着恢复教程,盲屏幕猜着按还原了. 2.之后一路从8代系统更 ...
- golang中的配置管理库viper
viper简介 Viper是适用于Go应用程序的完整配置解决方案.它旨在在应用程序中工作,并且可以处理所有类型的配置需求和格式.它支持: 设置默认值 从JSON,TOML,YAML,HCL,envfi ...
- golang中map原理剖析
1. golang中的map有自己的一套实现原理,其核心是由hmap和bmap两个结构体实现的 2. 初始化map package main func main() { // 初始化一个可容纳10个 ...
- 源码分析axios(1)~源码分析、模拟axios的创建
■ 查看源码发现,起初axios[instance=bind(Axios.prototype.request, context);]是一个函数, 但后续[ utils.extend(instance, ...