\(\mathcal{Description}\)

  Link.

  给定一棵树,边 \((u,v)\) 有边权 \(w(u,v)\)。每次操作可以使一条简单路径上的边权异或任意非负整数。求最少的操作次数使得所有边边权为 \(0\)。

  \(n\le10^5\),\(w(u,v)<16\)。

\(\mathcal{Solution}\)

  好妙的题 www。

  定义一个点的点权 \(val_u\) 为其所有邻接边边权的异或和,即 \(val_u=\bigoplus_{(u,v)\in E}w(u,v)\)。一个至关重要的发现:所有边权为零等价于所有点权为零

  左推右是显然的;右推左,数归,考虑到叶子的边权等于点权,所以去掉所有叶子仍满足,得证。

  再考虑一次操作,除路径两端的点,每个点有两条邻接边被异或了同一个数,所以这些点的点权不变

  非常 amazing 啊,这样一来问题就从树上剥离了——给一堆数,每次任选两个数异或同一个非负整数,求把这些数变成 \(0\) 的最小操作次数。


  首先,若存在 \(u\not=v,val_u=val_v\),显然应该用一次操作处理掉它们。问题进一步转化——给一个值域在 \([0,16)\) 的集合(无重复元素),求把这些数变成 \(0\) 的最小操作次数。

  鉴于 \(16=2^4\),考虑状压。设 \(f(S)\) 为处理集合 \(S\) 的最小操作次数。显然对于 \(S\) 内元素异或和不为 \(0\) 的 \(f(S)\),有 \(f(S)=+\infty\)。接下来想想对于 \(S\not=0\) 的转移:

\[f(S)=\min_{T\subset S}\{\operatorname{count}(S)-1,f(T)+f(S-T)\}
\]

  其中,前一项是暴力两两异或,后者即分别处理两个子集。

  设 \(w(u,v)\) 的上限 \(W=2^k,~k\in\mathbb N\),复杂度 \(\mathcal O(3^k+n)\)。

\(\mathcal{Code}\)

#include <cstdio>
#include <cstring> const int MAXN = 1e5, INF = 0x3f3f3f3f;
int n, val[MAXN + 5], cnt[16], f[1 << 16], xsum[1 << 16]; inline void chkmin ( int& a, const int b ) { if ( b < a ) a = b; } int main () {
scanf ( "%d", &n );
for ( int i = 1, u, v, w; i < n; ++ i ) {
scanf ( "%d %d %d", &u, &v, &w );
val[u] ^= w, val[v] ^= w;
}
int ans = 0, S = 0;
for ( int i = 0; i < n; ++ i ) ++ cnt[val[i]];
for ( int i = 1; i < 16; ++ i ) {
S |= ( cnt[i] & 1 ) << i >> 1;
ans += cnt[i] >> 1;
}
for ( int i = 1; i < 1 << 15; ++ i ) {
for ( int j = 0; j < 15; ++ j ) {
if ( ( i >> j ) & 1 ) {
++ f[i], xsum[i] ^= j + 1;
}
}
-- f[i];
}
for ( int s = 0; s < 1 << 15; ++ s ) {
if ( xsum[s] ) continue;
for ( int t = s; ; t = ( t - 1 ) & s ) {
if ( ! xsum[t] && ! xsum[s ^ t] ) chkmin ( f[s], f[t] + f[s ^ t] );
if ( ! t ) break;
}
}
printf ( "%d\n", ans + f[S] );
return 0;
}

Solution -「AT 3913」XOR Tree的更多相关文章

  1. Solution -「CF 1060F」Shrinking Tree

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个点的树,反复随机选取一条边,合并其两端两点,新点编号在两端两点等概率选取.问每个点留到最后的概率.    ...

  2. Solution -「ARC 104E」Random LIS

    \(\mathcal{Description}\)   Link.   给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...

  3. Solution -「HDU 5498」Tree

    \(\mathcal{Description}\)   link.   给定一个 \(n\) 个结点 \(m\) 条边的无向图,\(q\) 次操作每次随机选出一条边.问 \(q\) 条边去重后构成生成 ...

  4. Solution -「Gym 102956F」Find the XOR

    \(\mathcal{Description}\)   Link.   给定 \(n\) 个点 \(m\) 条边的连通无向图 \(G\),边有边权.其中 \(u,v\) 的距离 \(d(u,v)\) ...

  5. Solution -「ARC 125F」Tree Degree Subset Sum

    \(\mathcal{Description}\)   Link.   给定含有 \(n\) 个结点的树,求非负整数对 \((x,y)\) 的数量,满足存在 \(\exist S\subseteq V ...

  6. Solution -「Gym 102798K」Tree Tweaking

    \(\mathcal{Description}\)   Link.   给定排列 \(\{p_n\}\),求任意重排 \(p_{l..r}\) 的元素后,将 \(\{p_n\}\) 依次插入二叉搜索树 ...

  7. Solution -「Gym 102759I」Query On A Tree 17

    \(\mathcal{Description}\)   Link.   给定一棵含 \(n\) 个结点的树,结点 \(1\) 为根,点 \(u\) 初始有点权 \(a_u=0\),维护 \(q\) 次 ...

  8. Solution -「国家集训队」「洛谷 P2619」Tree I

    \(\mathcal{Description}\)   Link.   给一个 \(n\) 个点 \(m\) 条边的带权无向图,边有权值和黑白颜色,求恰选出 \(K\) 条白边构成的最小生成树.    ...

  9. Solution -「ARC 101E」「AT 4352」Ribbons on Tree

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个点的树,其中 \(2|n\),你需要把这些点两两配对,并把每对点间的路径染色.求使得所有边被染色的方案数 ...

随机推荐

  1. java调用redis的多种方式与心得

    心得: /** * 心得: * 1.连接方式主要有:直连同步,直连事务,直连管道,直连管道事务,分布式直连同步,分布式直连管道, * 分布式连接池同步,分布式连接池管道:普通连接池同步,普通连接池管道 ...

  2. Go语言系列之性能调优

    在计算机性能调试领域里,profiling 是指对应用程序的画像,画像就是应用程序使用 CPU 和内存的情况. Go语言是一个对性能特别看重的语言,因此语言中自带了 profiling 的库,这篇文章 ...

  3. Druid连接池参数maxWait配置错误引发的问题

    Druid连接池参数maxWait配置错误引发的问题 1. 背景 数据库服务器(服务部署在客户内网环境)的运行一段时间后,网卡出现了问题,导致所有服务都连接不上数据库,客户把网络恢复之后,反馈有个服务 ...

  4. HDU 2041 超级楼梯 (斐波那契数列 & 简单DP)

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=2041 题目分析:题目是真的水,不难发现规律涉及斐波那契数列,就直接上代码吧. 代码如下: #inclu ...

  5. test_5 排序‘+’、‘-’

    题目是:有一组"+"和"-"符号,要求将"+"排到左边,"-"排到右边,写出具体的实现方法. 方法一: l=['-', ...

  6. 大型站点TCP/IP协议优化

    作为一个DAU上百万或千万的站点,不仅仅需要做好网站应用程序.数据库的优化,还应从TCP/IP协议层去进行相关的优化: 在我的工作中,曾使用到了以下的几种基本的优化方式: 增大最大连接数 在Linux ...

  7. 面试必问之 CopyOnWriteArrayList,你了解多少?

    一.摘要 在介绍 CopyOnWriteArrayList 之前,我们一起先来看看如下方法执行结果,代码内容如下: public static void main(String[] args) { L ...

  8. Web开发之HTTP协议

    HTTP响应消息 一个HTTP响应代表服务器向客户端回送的数据. 一个完整的HTTP响应包括如下内容: 一个状态行.若干消息头.以及响应正文,其中的一些消息头和正文都是可选的,消息头和正文内容之间要用 ...

  9. java日志打印使用指南

    一.简介 日志打印是java代码开发中不可缺少的重要一步. 日志可以排查问题,可以搜集数据 二.常用日志框架 比较常用的日志框架就是logback, 一些老项目会使用log4j,他们用的都是slf4j ...

  10. 【刷题-LeetCode】230. Kth Smallest Element in a BST

    Kth Smallest Element in a BST Given a binary search tree, write a function kthSmallest to find the k ...