一 尺度函数与小波函数

基本尺度函数定义为:,对其向右平移任意 k 个单位,构成函数族 , 该函数族在 空间中正交,证明如下:

2 当 m 不等于 k 时,

函数族  构成一组正交基,并形成  子空间。在  子空间中,任意函数均可表示为  的线性组合,

将函数族  构造宽度缩小一半,则可形成宽度为  的一组正交基,,同样,该函数族在 空间中正交,并形成  子空间。在  子空间中,任意函数均可表示为  的线性组合,

通过以上举例可得:设 j 为非负整数,j 级函数子空间可表示为 ,其对应正交基包括:

,观察  中  可有  中  线性组合( 中任意函数均可用 中函数线性组合表达),则  为  得子空间。各个子空间之间存在如下关系:

使用不同子空间  中尺度函数得线性组合,可以阶梯近似任意连续函数。在噪声滤除应用中,需要提取一些属于 (高频信息)但不属于 (低频信息)的方法,小波函数即描述了这部分信息,也即小波函数描述 相对于  的正交补空间。根据以上描述,小波函数应该满足一些特性:

1 小波函数仍然位于  空间中,则他应该是  空间基函数的线性组合;

2 小波函数位于  子空间中,则它应于  正交。

空间的基本小波函数表示为:,该函数位于 空间,且与  正交。同样对小波函数向右平移 k 个单位,构成函数族:

,该函数族在 空间中正交。

 空间的基本小波函数表示为:,该函数族在 空间中正交。

使用尺度函数与小波函数,可以将  空间中函数进行分解:,其中  为  空间中的小波函数,继续以上分解,可得:

二 Haar分解

1 将函数离散化为 ,该函数位于  空间中;

2 由于 ,可以将  空间中该函数分解为 (更平滑尺度函数) 与 (小波函数),根据尺度函数与小波函数定义,有如下关系:

(根据图形可验证结论正确),进一步有:

3 观察到  分解方式不一致,需要将原函数改写为:

4 对改写后的  分别使用更平滑尺度函数与对应小波函数再次改写,有:

,整理得:

5 令 ,继续分解直到 ,可得:

,其中, 为相应的小波分量。

三 Haar重构

1 函数被分解为 , 其中,

(根据图形可验证结论正确),进一步有:

3 重构为

重构为 

5 , 其中,  由  组合;

6 继续重构  与 ,直到重构 

参考资料 小波与傅里叶分析基础 Albert Boggess & Francis J. Narcowich

Haar小波分析的更多相关文章

  1. 图像算法五:【图像小波变换】多分辨率重构、Gabor滤波器、Haar小波

    原 https://blog.csdn.net/alwaystry/article/details/52756051 图像算法五:[图像小波变换]多分辨率重构.Gabor滤波器.Haar小波 2018 ...

  2. Haar小波的理解

    1. 首先理解L^2(R)的概念 L^2(R) 是一个内积空间的概念,表示两个无限长的向量做内积,张成的空间问题.也就是两个函数分别作为一个向量,这两个函数要是平方可积的.L^2(a,b)=<f ...

  3. 特征检测之Haar

    Harr特征, 主要用于人脸检测,可以参考我的博文 基于MATLAB的adaboost级联形式的人脸检测实现 1 harr特征的原理 2 haar特征的计算 3 haar特征的应用

  4. 浅谈人脸检测之Haar分类器方法

    我们要探讨的Haar分类器实际上是Boosting算法(提升算法)的一个应用,Haar分类器用到了Boosting算法中的AdaBoost算法,只是把AdaBoost算法训练出的强分类器进行了级联,并 ...

  5. OpenCv haar+SVM训练的xml检测人头位置

    注意:opencv-2.4.10 #include "stdio.h"#include "string.h"#include "iostream&qu ...

  6. opencv - haar人脸特征的训练

    step 1: 把正样品,负样品,opencv_createsamples,opencv_haartraining放到一个文件夹下面,利于后面的运行.step 2: 生成正负样品的描述文件 正样品描述 ...

  7. 图像特征提取三大法宝:HOG特征,LBP特征,Haar特征(转载)

    (一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和 ...

  8. Haar特征

    转自:http://blog.csdn.net/carson2005/article/details/8094699 Haar-like特征,即很多人常说的Haar特征,是计算机视觉领域一种常用的特征 ...

  9. 浅析人脸检测之Haar分类器方法

    一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发 ...

随机推荐

  1. 新增访客数量MR统计之NewInstallUserMapper相关准备

    关注公众号:分享电脑学习回复"百度云盘" 可以免费获取所有学习文档的代码(不定期更新)云盘目录说明:tools目录是安装包res 目录是每一个课件对应的代码和资源等doc 目录是一 ...

  2. 利用Word2010制作流程图

    利用Word2010制作流程图 原文链接:https://www.toutiao.com/i6483034968225235469/ 一.页面和段落的设置 启动Word2010,打开一个空白文档,并切 ...

  3. 谈谈Raft

    本文主要参考 极客时间-etcd 实战课 GitChat-分布式锁的最佳实践之:基于 Etcd 的分布式锁 谈到分布式协调组件,我们第一个想到的应该是大名鼎鼎的Zookeeper,像我们常用的Kafk ...

  4. C#进程调用FFmpeg操作音视频

    项目背景 因为公司需要对音视频做一些操作,比如说对系统用户的发音和背景视频进行合成,以及对多个音视频之间进行合成,还有就是在指定的源背景音频中按照对应的规则在视频的多少秒钟内插入一段客户发音等一些复杂 ...

  5. winform全局异常处理

    static void Main() { //设置应用程序处理异常方式:ThreadException处理 Application.SetUnhandledExceptionMode(Unhandle ...

  6. JSON串、JSON对象、Java对象的相互转换2

    对象类型转换: 1.Java对象-->JSON对象2.Java对象-->JSON字符串 3.JSON对象-->JSON字符串 4.JSON对象-->Java对象 5.JSON字 ...

  7. golang中匿名函数的应用-回调函数-闭包

    package main import ( "fmt" "strconv" ) type funcType func(int, int) int // 自定义函 ...

  8. 【webpack4.0】---dev.config.js基本配置(六)

    一.开发环境配置准备 1.创建dev.config.js文件 用来配置开发环境的代码 2.安装webpack-merge cnpm install webpack-merge -D 用来合并webpa ...

  9. dubbo-gateway 高性能dubbo网关

    dubbo-gateway dubbo-gateway 提供了http协议到dubbo协议的转换,但[并非]使用dubbo的[泛化]调用(泛化调用性能比普通调用有10-20%的损耗,通过普通异步的调用 ...

  10. IDEA出现Cannot resolve symbol “xxx“(无法解析符号)的解决办法

    1,File->Invalidate Caches/Restart 清除缓存并重启 idea 2,检查pom文件中的依赖关系是否正确 3,maven -> Reimport 4,打开pro ...