(人生第一篇bzoj题解有点激动

首先介绍一下题目:

看它题目那么长,其实意思就是给定一个数a,求将其拆分成n个数,通过这n个数可以表示出1~a中所有数的方案中,求最小的n。

您看懂了嘛?不懂咱来举个栗子:

3可以变为(1,2)两个数(废话,我当然知道),使1,2可以表示出1,2,3这些数字。看到这道题就想到了不久前看到的二进制优化多重背包。简直一模一样。

我们想我们对于一个数P。我们可以将其分成两部分(1~P/2)与(P/2+1,P),我们思考:假设我们已经知道(1~P/2)至少需要m个数,那么我们完全可以在左区间的基础上添加一个P/2这个数,使这m+1个数可以表示(1~P)的所有数,因为(1+P/2~P/2+P/2)=(P/2+1~P)。

我们其实又可以通过手+草稿纸发现关于一个P的最小值n是有(1~P)的左半边区间(1~P/2)的最小值+1有关,而(1~P/2)的最小值又与它本身的左半边区间的值有关,所以事实上这是一个可以递推的过程。

然后我们归纳总结一下——P与P/2有关,P/2又与P/4有关,很容易联想到二进制。我们只要手算过后稍一扩展我们便会发现——关于一个数P,我们使一个数s满足2s -1<P,注意严格小于P,即s为log2(P),那么这一个数P可以被1,2,4.......2s-1,P-2 +1 分解。

那么其实我们很快就可以知道一个数P所对应最小n了,其实就是log2(P)+1.那么这道题一下变得简单了起来,贴代码

#include<iostream>
#include<cmath>
#include<cstdio>
using namespace std;
int main()
{
long long a;
scanf("%lld",&a);
printf("%lld",(long long )log2(a)+1);
}

鬼谷子的钱袋

其实这道题在luogu上有加强版本https://www.luogu.org/problem/P2320,其要求输出每个钱袋的数量,这道题也很简单,我们通过上面的推理先求出S,再以此求出1~2s-1 和P-2s+1再排序输出即可(据说原本只有算n,luogu加上了这道题,然而数据貌似有锅)

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
long long p,s,k;
int main()
{
scanf("%lld",&p);
printf("%lld\n",(long long)log2(p)+1);
s=log2(p);
k=p-(1<<s)+1;
for(long long i=0;i<=s-1;i++)
{
if(1<<i>k&&k!=0)
{
printf("%lld ",k);
k=0;
}
printf("%lld ",1<<i);
}
if(k!=0)
printf("%lld ",k);
return 0;
}

鬼谷子的钱袋(加强版

接下来简单描述一下标题所写的二进制优化多重背包

一般来说我们的多重背包的思路是枚举取n个同种物品,转化为01背包

那这样的时间复杂度 O(NV*∑(V/W[i])).(V为体积,W[i]为每件的费用)

但假如我们将每件物品都像鬼谷子的钱袋一样二进制拆分,那每一个物品都会被拆成log2(W[i])+1个物品

那这样再做01背包所要的时间复杂度为 O(V*log(W[i])+V)(PS:这个时间复杂度有可能写错了,但是应该差不多)

关于二进制优化多重背包以后我会再写一篇博客来讲,这篇主要的是题解hhh

您理解了嘛,慢走。

不理解的可以加qq2733524923我们一起探讨哦

[Bzoj 1192][HNOI2006]鬼谷子的钱袋(二进制优化多重背包)的更多相关文章

  1. BZOJ 1192: [HNOI2006]鬼谷子的钱袋 数学结论

    1192: [HNOI2006]鬼谷子的钱袋 Description 鬼谷子非常聪明,正因为这样,他非常繁忙,经常有各诸侯车的特派员前来向他咨询时政.有一天,他在咸阳游历的时候,朋友告诉他在咸阳最大的 ...

  2. BZOJ 1192: [HNOI2006]鬼谷子的钱袋(新生必做的水题)

    1192: [HNOI2006]鬼谷子的钱袋 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3557  Solved: 2596[Submit][St ...

  3. BZOJ 1192 [HNOI2006]鬼谷子的钱袋:二进制 砝码称重问题

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1192 题意: 鬼谷子带了a元钱,他要把a元钱分装在小袋子中,使得任意不大于a的数目的钱,都 ...

  4. bzoj 1192: [HNOI2006]鬼谷子的钱袋 思维_二进制

    十分巧妙的一道题. 考虑当前凑出$[1,i/2)$,那么再有一个 $i/2$,就可以凑出 [i/2+1,i). 注意,这里的 $i$ 都是 2 的 $k$ 次幂. 于是,我们只要找到 $i$ 使得 2 ...

  5. BZOJ 1192: [HNOI2006]鬼谷子的钱袋 [娱乐]

    题意: n个数分组,使得小于n的每个数都能表示出来,最少几组 就是“最优集合”的超级弱化版.....每次+=now+1 然后一个貌似科学的方法是n二进制拆分 #include <iostream ...

  6. 1192: [HNOI2006]鬼谷子的钱袋

    1192: [HNOI2006]鬼谷子的钱袋 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3530  Solved: 2575[Submit][St ...

  7. poj1014二进制优化多重背包

    Dividing Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 53029   Accepted: 13506 Descri ...

  8. 51nod 1086 背包问题 V2(二进制优化多重背包)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1086 题解:怎么用二进制优化多重背包,举一个例子就明白了. ...

  9. POJ - 1276 二进制优化多重背包为01背包

    题意:直接说数据,735是目标值,然后3是后面有三种钱币,四张125的,六张五块的和三张350的. 思路:能够轻易的看出这是一个多重背包问题,735是背包的容量,那些钱币是物品,而且有一定的数量,是多 ...

随机推荐

  1. 【数据结构与算法Python版学习笔记】图——最短路径问题、最小生成树

    最短路径问题 概念 可以通过"traceroute"命令来跟踪信息传送的路径: traceroute www.lib.pku.edu.cn 可以将互联网路由器体系表示为一个带权边的 ...

  2. 分布式表示(Distributed Representation)

    NLP模型笔记 - 分布式表示 ziuno 2020-03-08 19:52:50 410 收藏 2 分类专栏: NLP 模型 笔记 文章标签: nlp 最后发布:2020-03-08 19:52:5 ...

  3. Linux常用命令介绍(满足日常操作)

    大家好,今天来给大家分享一些Linux的常用命令,希望对大家有用 命令行的基本格式:   命令字 [选项] [参数]     其中,命令字.选项.参数之间用空格分开,多余的空格将被忽略.[ ]括起来的 ...

  4. gridlayout在kv中的引用

    from kivy.app import App from kivy.uix.gridlayout import GridLayout class GridLayoutWidget(GridLayou ...

  5. Scrum Meeting 0503

    零.说明 日期:2021-5-3 任务:简要汇报两日内已完成任务,计划后两日完成任务 一.进度情况 组员 负责 两日内已完成的任务 后两日计划完成的任务 qsy PM&前端 完成登录.后端管理 ...

  6. 搬运3:welpwnctf题目

    记录一道自己做的ctf题目:welpwn --RCTF-2015 1.老生常谈checksec查看: 可以看到只开了nx保护,下面我们进入ida下面看看. 发现是一个想rbp-400,rsp+0h的地 ...

  7. Noip模拟74 2021.10.11

    T1 自然数 考场上当我发现我的做法可能要打线段树的时候,以为自己百分之百是考虑麻烦了 但还是打了,还过掉了所有的样例,于是十分自信的就交了 正解还真是线段树,真就第一题数据结构 但是包括自己造的小样 ...

  8. 上拉电阻大小对i2c总线的影响

    漏极开路上拉电阻取值为何不能很大或很小? 如果上拉电阻值过小,Vcc灌入端口的电流(Ic)将较大,这样会导致MOS管V2(三极管)不完全导通(Ib*β<Ic),有饱和状态变成放大状态,这样端口输 ...

  9. 【做题记录】[NOIP2011 提高组] 观光公交

    P1315 [NOIP2011 提高组] 观光公交 我们想在 \(k\) 次加速每一次都取当前最优的方案加速. 考虑怎样计算对于每一条边如果在当前情况下使用加速器能够使答案减少的大小. 如果当前到达某 ...

  10. 转载:10G以太网光口与Aurora接口回环实验

    10G以太网光口与高速串行接口的使用越来越普遍,本文拟通过一个简单的回环实验,来说明在常见的接口调试中需要注意的事项.各种Xilinx FPGA接口学习的秘诀:Example Design.欢迎探讨. ...