一.UDF(一进一出)

步骤

① 注册UDF函数,可以使用匿名函数。

② 在sql查询的时候使用自定义的UDF。

示例

import org.apache.spark.sql.{DataFrame, SparkSession}

/**
* @description: UDF一进一出
* @author: HaoWu
* @create: 2020年08月09日
*/
object UDF_Test {
def main(args: Array[String]): Unit = {
//创建SparkSession
val session: SparkSession = SparkSession.builder
.master("local[*]")
.appName("MyApp")
.getOrCreate()
//注册UDF
session.udf.register("addHello",(name:String) => "hello:"+name)
//读取json格式文件{"name":"zhangsan","age":20},创建DataFrame
val df: DataFrame = session.read.json("input/1.txt")
//创建临时视图:person
df.createOrReplaceTempView("person")
//查询的时候使用UDF
session.sql(
"""select
|addHello(name),
|age
|from person
|""".stripMargin).show
}
}

结果

|addHello(name)|age|
+--------------+---+
|hello:zhangsan| 20|
| hello:lisi| 30|
+--------------+---+

二.UDAF(多近一出)

spark2.X 实现方式

2.X版本:UserDefinedAggregateFunction 无类型或弱类型

步骤

①继承UserDefinedAggregateFunction,实现其中的方法

②创建函数对象,注册函数,在sql中使用

    //创建UDFA对象
val avgDemo1: Avg_UDAF_Demo1 = new Avg_UDAF_Demo1
//在spark中注册聚合函数
spark.udf.register("ageDemo1", avgDemo1)
案例

需求:实现avg()聚合函数的功能,要求结果是Double类型

代码实现

①继承UserDefinedAggregateFunction,实现其中的方法
import org.apache.spark.sql.Row
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types.{DoubleType, IntegerType, LongType, StructField, StructType} /**
* @description: UDAF(多近一出):求age的平均值
* 2.X 版本继承UserDefinedAggregateFunction类,弱类型
* 非常类似累加器,aggregateByKey算子的操作,有个ZeroValue,不断将输入的值做归约操作,然后再赋值给ZeroValue
* @author: HaoWu
* @create: 2020年08月08日
*/
class Avg_UDAF_Demo1 extends UserDefinedAggregateFunction {
//聚合函数输入参数的数据类型,
override def inputSchema = StructType(StructField("age", LongType) :: Nil) //聚合函数缓冲区中值的数据类型(sum,count)
override def bufferSchema = StructType(StructField("sum", LongType) :: StructField("count", LongType) :: Nil) //函数返回值的数据类型
override def dataType = DoubleType //稳定性:对于相同的输入是否一直返回相同的输出,一般都是true
override def deterministic = true //函数缓冲区初始化,就是ZeroValue清空
override def initialize(buffer: MutableAggregationBuffer): Unit = {
//缓存区看做一个数组,将每个元素置空
//sum
buffer(0) = 0L
//count
buffer(1) = 0L }
//更新缓冲区中的数据->将输入的值和缓存区数据合并
override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
//input是Row类型,通过getXXX(索引值)取数据
if (!input.isNullAt(0)) {
val age = input.getLong(0)
buffer(0) = buffer.getLong(0) + age
buffer(1) = buffer.getLong(1) + 1
}
}
//合并缓冲区 (sum1,count1) + (sum2,count2) 合并
override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0)
buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1)
}
//计算最终结果
override def evaluate(buffer: Row) = buffer.getLong(0).toDouble/buffer.getLong(1)
}
②创建函数对象,注册函数,在sql中使用
/**
* @description: 实现集合函数avg的功能
* @author: HaoWu
* @create: 2020年08月13日
*/
object UDAF_Test {
def main(args: Array[String]): Unit = { //创建SparkSession
val spark: SparkSession = SparkSession.builder
.master("local[*]")
.appName("MyApp")
.getOrCreate()
//读取json格式文件{"name":"zhangsan","age":20}
val df: DataFrame = spark.read.json("input/1.txt")
//创建临时视图:person
df.createOrReplaceTempView("person")
//创建UDFA对象
val avgDemo1: Avg_UDAF_Demo1 = new Avg_UDAF_Demo1
//在spark中注册聚合函数
spark.udf.register("ageDemo1", avgDemo1)
//查询的时候使用UDF
spark.sql(
"""select
|ageDemo1(age)
|from person
|""".stripMargin).show
}
}

spark3.X实现方式

3.x版本: 认为2.X继承UserDefinedAggregateFunction的方式过时,推荐继承Aggregator ,是强类型

步骤

①继承Aggregator [-IN, BUF, OUT],声明泛型,实现其中的方法

    abstract class Aggregator[-IN, BUF, OUT]
IN: 输入的类型
BUF: 缓冲区类型
OUT: 输出的类型

②创建函数对象,注册函数,在sql中使用

    //创建UDFA对象
val avgDemo2: Avg_UDAF_Demo2 = new Avg_UDAF_Demo2
//在spark中注册聚合函数
spark.udf.register("myAvg",functions.udaf(avgDemo2))

注意:2.X和3.X的注册方式不同

案例

需求:实现avg()聚合函数的功能,要求结果是Double类型

代码实现

①继承Aggregator [-IN, BUF, OUT],声明泛型,实现其中的方法

其中缓冲区数据用样例类进行封装。

MyBuffer类

/**
* 定义MyBuffer样例类
* @param sum 组数据sum和
* @param count 组的数据个数
*/
case class MyBuffer(var sum: Long, var count: Long)

自定义UDAF函数

import org.apache.spark.sql.Encoders
import org.apache.spark.sql.expressions.Aggregator /**
* @description: UDAF(多近一出):求age的平均值
* 3.X Aggregator,强类型
* 非常类似累加器,aggregateByKey算子的操作,有个ZeroValue,不断将输入的值做归约操作,然后再赋值给ZeroValue
* @author: HaoWu
* @create: 2020年08月08日
*/
class Avg_UDAF_Demo2 extends Aggregator[Long, MyBuffer, Double] {
//函数缓冲区初始化,就是ZeroValue清空
override def zero = MyBuffer(0L, 0L) //将输入的值和缓存区数据合并
override def reduce(b: MyBuffer, a: Long) = {
b.sum = b.sum + a
b.count = b.count + 1
b
} //合并缓冲区
override def merge(b1: MyBuffer, b2: MyBuffer) = {
b1.sum = b1.sum + b2.sum
b1.count = b1.count + b2.count
b1
} //计算最终结果
override def finish(reduction: MyBuffer) = reduction.sum.toDouble / reduction.count /* scala中
常见的数据类型: Encoders.scalaXXX
自定义的类型:ExpressionEncoder[T]() 返回 Encoder[T]
样例类(都是Product类型): Encoders.product[T],返回Produce类型的Encoder!
*/
//缓存区的Encoder类型
override def bufferEncoder = Encoders.product[MyBuffer] //输出结果的Encoder类型
override def outputEncoder = Encoders.scalaDouble
}
②创建函数对象,注册函数,在sql中使用
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.{DataFrame, Row, SparkSession, functions} /**
* @description: 实现集合函数avg的功能
* @author: HaoWu
* @create: 2020年08月13日
*/
object UDAF_Test {
def main(args: Array[String]): Unit = { //创建SparkSession
val spark: SparkSession = SparkSession.builder
.master("local[*]")
.appName("MyApp")
.getOrCreate()
//读取json格式文件{"name":"zhangsan","age":20}
val df: DataFrame = spark.read.json("input/1.txt")
//创建临时视图:person
df.createOrReplaceTempView("person")
//创建UDFA对象
val avgDemo2: Avg_UDAF_Demo2 = new Avg_UDAF_Demo2
//在spark中注册聚合函数
spark.udf.register("myAvg",functions.udaf(avgDemo2))
//查询的时候使用UDF
spark.sql(
"""select
|myAvg(age)
|from person
|""".stripMargin).show
}
}

Spark(十三)【SparkSQL自定义UDF/UDAF函数】的更多相关文章

  1. 047 SparkSQL自定义UDF函数

    一:程序部分 1.需求 Double数据类型格式化,可以给定小数点位数 2.程序 package com.scala.it import org.apache.spark.{SparkConf, Sp ...

  2. 【Spark篇】---SparkSQL中自定义UDF和UDAF,开窗函数的应用

    一.前述 SparkSQL中的UDF相当于是1进1出,UDAF相当于是多进一出,类似于聚合函数. 开窗函数一般分组取topn时常用. 二.UDF和UDAF函数 1.UDF函数 java代码: Spar ...

  3. 【Spark篇】---SparkSql之UDF函数和UDAF函数

    一.前述 SparkSql中自定义函数包括UDF和UDAF UDF:一进一出  UDAF:多进一出 (联想Sum函数) 二.UDF函数 UDF:用户自定义函数,user defined functio ...

  4. Spark 自定义函数(udf,udaf)

    Spark 版本 2.3 文中测试数据(json) {"name":"lillcol", "age":24,"ip":& ...

  5. Spark Sql的UDF和UDAF函数

    Spark Sql提供了丰富的内置函数供猿友们使用,辣为何还要用户自定义函数呢?实际的业务场景可能很复杂,内置函数hold不住,所以spark sql提供了可扩展的内置函数接口:哥们,你的业务太变态了 ...

  6. spark教程(18)-sparkSQL 自定义函数

    sparkSQL 也允许用户自定义函数,包括 UDF.UDAF,但没有 UDTF 官方 API class pyspark.sql.UDFRegistration(sparkSession)[sour ...

  7. Hive 自定义函数 UDF UDAF UDTF

    1.UDF:用户定义(普通)函数,只对单行数值产生作用: 继承UDF类,添加方法 evaluate() /** * @function 自定义UDF统计最小值 * @author John * */ ...

  8. sparksql 自定义用户函数(UDF)

    自定义用户函数有两种方式,区别:是否使用强类型,参考demo:https://github.com/asker124143222/spark-demo 1.不使用强类型,继承UserDefinedAg ...

  9. 自定义UDF函数应用异常

    自定义UDF函数应用异常 版权声明:本文为yunshuxueyuan原创文章.如需转载请标明出处: http://www.cnblogs.com/sxt-zkys/QQ技术交流群:299142667 ...

随机推荐

  1. C# 如何将日期格式化ISO8601模式

    类似于这样的时间戳格式:预计来访时间,时间参数需满足ISO8601格式:yyyy-MM-ddTHH:mm:ss+当前时区,例如北京时间:2018-07-26T15:00:00 + 08:00 stri ...

  2. linux切换shell

    1. $SHELL这一环境变量用于保存当前用户使用的shell,所以我们可以输出$SHELL来查看当前使用的shell是什么: 2. 查看/etc/shells文件,可以看到当前系统中安装的有效的sh ...

  3. 矩形覆盖 牛客网 剑指Offer

    矩形覆盖 牛客网 剑指Offer 题目描述 我们可以用21的小矩形横着或者竖着去覆盖更大的矩形.请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? class Solution: ...

  4. 链表分割 牛客网 程序员面试金典 C++ Python

    链表分割 牛客网 程序员面试金典 C++ Python 题目描述 编写代码,以给定值x为基准将链表分割成两部分,所有小于x的结点排在大于或等于x的结点之前 给定一个链表的头指针 ListNode* p ...

  5. 创建双向 CA x509 验证证书 kube-apiserver

    1. 设置 kube-apiserver 的 CA 证书相关的文件和启动参数 使用 OpenSSL 工具在 Master 服务器上创建 CA 证书和私钥相关的文件: # openssl genrsa ...

  6. GitHub上 README 增加图片标签

    hey Guys~ 你可能遇到的GitHub上好的项目都有一个非常棒的README,其中不乏用到一些非常好看的标签.比如下面这样: walle fastjson 那我们怎样自己添加一个高大上图片标签呢 ...

  7. Fiddler抓包工具简介:(二)下载安装及配置证书和代理

    Fiddler下载安装及配置 一.安装过程: 下载官网:https://www.telerik.com/fiddler 安装过程:一路next即可 启动Fiddler:当你启动了Fiddler,程序将 ...

  8. springcloud zuul shiro网关鉴权并向服务传递用户信息

    1.pom文件 <dependencies> <!--eureka客户端--> <dependency> <groupId>org.springfram ...

  9. CentOS 设置网络及安装 ifconfig

    centos使用yum报错"Could not resolve host: mirrorlist.centos.org; 未知的错误" 先用NetworkManager包的nmcl ...

  10. jenkins内置变量的使用

    参考链接:  https://www.cnblogs.com/puresoul/p/4828913.html 一.查看Jenkins有哪些环境变量 1.新建任意一个job 2.增加构建步骤:Execu ...