P6113-[模板]一般图最大匹配【带花树】
正题
题目链接:https://www.luogu.com.cn/problem/P6113
题目大意
给出一张无向图,求最大匹配。
\(1\leq n\leq 10^3,1\leq m\leq 5\times 10^4\)
解题思路
带花树的模板,我也不会讲/kel
所以看下面两篇大佬的博客吧
yyb-带花树算法学习笔记
Bill Yang-带花树学习笔记
时间复杂度好像是\(O(n^3)\)的
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int N=1010,M=3e5+10;
struct node{
int to,next;
}a[M];
int n,m,tot,tk,ans,ls[N],dfn[N];
int fa[N],pre[N],tag[N],match[N];
queue<int> q;
void addl(int x,int y){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;return;
}
int find(int x)
{return (fa[x]==x)?x:(fa[x]=find(fa[x]));}
int LCA(int x,int y){
++tk;x=find(x);y=find(y);
while(dfn[x]!=tk){
dfn[x]=tk;
x=find(pre[match[x]]);
if(y)swap(x,y);
}
return x;
}
void Blossom(int x,int y,int lca){
while(find(x)!=lca){
pre[x]=y;y=match[x];
if(tag[y]==2){tag[y]=1;q.push(y);}
fa[x]=fa[y]=lca;x=pre[y];
}
return;
}
int Aug(int s){
memset(tag,0,sizeof(tag));
memset(pre,0,sizeof(pre));
for(int i=1;i<=n;i++)fa[i]=i;
while(!q.empty())q.pop();
q.push(s);tag[s]=1;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(!tag[y]){
tag[y]=2;pre[y]=x;
if(!match[y]){
for(int u=y,lst;u;u=lst)
lst=match[pre[u]],match[u]=pre[u],match[pre[u]]=u;
return 1;
}
tag[match[y]]=1;q.push(match[y]);
}
else if(tag[y]==1&&find(y)!=find(x)){
int lca=LCA(x,y);
Blossom(x,y,lca);
Blossom(y,x,lca);
}
}
}
return 0;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
addl(x,y);addl(y,x);
}
for(int i=1;i<=n;i++)
if(!match[i])ans+=Aug(i);
printf("%d\n",ans);
for(int i=1;i<=n;i++)
printf("%d ",match[i]);
return 0;
}
P6113-[模板]一般图最大匹配【带花树】的更多相关文章
- HDOJ 4687 Boke and Tsukkomi 一般图最大匹配带花树+暴力
一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and ...
- ZOJ 3316 Game 一般图最大匹配带花树
一般图最大匹配带花树: 建图后,计算最大匹配数. 假设有一个联通块不是完美匹配,先手就能够走那个没被匹配到的点.后手不论怎么走,都必定走到一个被匹配的点上.先手就能够顺着这个交错路走下去,最后一定是后 ...
- 【UOJ #79】一般图最大匹配 带花树模板
http://uoj.ac/problem/79 带花树模板,做法详见cyb的论文或fhq的博客. 带花树每次对一个未盖点bfs增广,遇到奇环就用并查集缩环变成花(一个点),同时记录每个点的Next( ...
- 【learning】一般图最大匹配——带花树
问题描述 对于一个图\(G(V,E)\),当点对集\(S\)满足任意\((u,v)\in S\),均有\(u,v\in V,(u,v)\in E\),且\(S\)中没有点重复出现,我们称\(S\) ...
- UOJ #79 一般图最大匹配 带花树
http://uoj.ac/problem/79 一般图和二分图的区别就是有奇环,带花树是在匈牙利算法的基础上对奇环进行缩点操作,复杂度似乎是O(mn)和匈牙利一样. 具体操作是一个一个点做类似匈牙利 ...
- 【UOJ 79】 一般图最大匹配 (✿带花树开花)
从前一个和谐的班级,所有人都是搞OI的.有 n 个是男生,有 0 个是女生.男生编号分别为 1,…,n. 现在老师想把他们分成若干个两人小组写动态仙人掌,一个人负责搬砖另一个人负责吐槽.每个人至多属于 ...
- kuangbin带你飞 匹配问题 二分匹配 + 二分图多重匹配 + 二分图最大权匹配 + 一般图匹配带花树
二分匹配:二分图的一些性质 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j ...
- URAL 1099. Work Scheduling (一般图匹配带花树)
1099. Work Scheduling Time limit: 0.5 secondMemory limit: 64 MB There is certain amount of night gua ...
- HDU 4687 Boke and Tsukkomi (一般图匹配带花树)
Boke and Tsukkomi Time Limit: 3000/3000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Othe ...
- URAL1099 Work Scheduling —— 一般图匹配带花树
题目链接:https://vjudge.net/problem/URAL-1099 1099. Work Scheduling Time limit: 0.5 secondMemory limit: ...
随机推荐
- GIT基础篇,配置账号及命令查看以及帮助命令
提交用户名和邮件地址 1 安装完Git首先要设置你的用户名称与邮件地址.每一个Git的提交都会使用这些信息,并且它会写入到你的每一次提交中. 2 git config --global user. ...
- HttpClient4.3教程 第三章 Http状态管理
最初,Http被设计成一个无状态的,面向请求/响应的协议,所以它不能在逻辑相关的http请求/响应中保持状态会话.由于越来越多的系统使用http协议,其中包括http从来没有想支持的系统,比如电子商务 ...
- CentOS8安装jdk1.8
安装方法 CentOS8上使用 yum 直接安装,环境变量自动配置好 查看是否已安装 看到下面结果,说明已经安装配置 jdk [root@iZ2ze8crquorxf6c7l0eluZ ~]# jav ...
- 三、vue前后端交互(轻松入门vue)
轻松入门vue系列 Vue前后端交互 六.Vue前后端交互 1. 前后端交互模式 2. Promise的相关概念和用法 Promise基本用法 then参数中的函数返回值 基于Promise处理多个A ...
- CrackMe-CrackHead
转载自:OllyDbg入门教程 现在进入第三篇,这一篇我们重点讲解怎样使用 OllyDBG 中的函数参考(即名称参考)功能.仍然选择 crackmes.cjb.net 镜像打包中的一个名称为 Crac ...
- 基于mysql的sakila数据库脚本分析
本例是基于mysql的sakila数据库脚本的复杂查询分析,大家可以去mysql官网上下载此脚本:也可以进入我的资源页进行下载: 关系图如下: 下面是查询的案例: 1.查询某部电影的所属类别,语言 S ...
- Go并发控制--WaitGroup篇
目录 1. 前言 2. 使用WaitGroup控制 2.1 使用场景 2.2 信号量 1.3 WaitGroup 数据结构 2.3.1 Add () 方法 2.3.2 Wait() 2.3.3 Don ...
- springboot中redis取缓存类型转换异常
异常如下: [dispatcherServlet] in context with path [] threw exception [Request processing failed; nested ...
- for循环操作(for...in、forEach)
1.for...in语句用于对数组或者对象的属性进行循环操作,是for循环的一种. 注意:该方法可用于数组或对象. 语法: for(变量 in 对象/数组){} 如: var obj = { nam ...
- Linux centos7 find 命令
2021-08-13 1. 命令简介 find 命令用来在指定目录下查找文件.任何位于参数之前的字符串都将被视为欲查找的目录名.如果使用该命令时,不设置任何参数,则 find 命令将在当前目录下查找子 ...