正题

题目链接:https://www.luogu.com.cn/problem/P6113


题目大意

给出一张无向图,求最大匹配。

\(1\leq n\leq 10^3,1\leq m\leq 5\times 10^4\)


解题思路

带花树的模板,我也不会讲/kel

所以看下面两篇大佬的博客吧

yyb-带花树算法学习笔记

Bill Yang-带花树学习笔记

时间复杂度好像是\(O(n^3)\)的


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int N=1010,M=3e5+10;
struct node{
int to,next;
}a[M];
int n,m,tot,tk,ans,ls[N],dfn[N];
int fa[N],pre[N],tag[N],match[N];
queue<int> q;
void addl(int x,int y){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;return;
}
int find(int x)
{return (fa[x]==x)?x:(fa[x]=find(fa[x]));}
int LCA(int x,int y){
++tk;x=find(x);y=find(y);
while(dfn[x]!=tk){
dfn[x]=tk;
x=find(pre[match[x]]);
if(y)swap(x,y);
}
return x;
}
void Blossom(int x,int y,int lca){
while(find(x)!=lca){
pre[x]=y;y=match[x];
if(tag[y]==2){tag[y]=1;q.push(y);}
fa[x]=fa[y]=lca;x=pre[y];
}
return;
}
int Aug(int s){
memset(tag,0,sizeof(tag));
memset(pre,0,sizeof(pre));
for(int i=1;i<=n;i++)fa[i]=i;
while(!q.empty())q.pop();
q.push(s);tag[s]=1;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(!tag[y]){
tag[y]=2;pre[y]=x;
if(!match[y]){
for(int u=y,lst;u;u=lst)
lst=match[pre[u]],match[u]=pre[u],match[pre[u]]=u;
return 1;
}
tag[match[y]]=1;q.push(match[y]);
}
else if(tag[y]==1&&find(y)!=find(x)){
int lca=LCA(x,y);
Blossom(x,y,lca);
Blossom(y,x,lca);
}
}
}
return 0;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
addl(x,y);addl(y,x);
}
for(int i=1;i<=n;i++)
if(!match[i])ans+=Aug(i);
printf("%d\n",ans);
for(int i=1;i<=n;i++)
printf("%d ",match[i]);
return 0;
}

P6113-[模板]一般图最大匹配【带花树】的更多相关文章

  1. HDOJ 4687 Boke and Tsukkomi 一般图最大匹配带花树+暴力

    一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and ...

  2. ZOJ 3316 Game 一般图最大匹配带花树

    一般图最大匹配带花树: 建图后,计算最大匹配数. 假设有一个联通块不是完美匹配,先手就能够走那个没被匹配到的点.后手不论怎么走,都必定走到一个被匹配的点上.先手就能够顺着这个交错路走下去,最后一定是后 ...

  3. 【UOJ #79】一般图最大匹配 带花树模板

    http://uoj.ac/problem/79 带花树模板,做法详见cyb的论文或fhq的博客. 带花树每次对一个未盖点bfs增广,遇到奇环就用并查集缩环变成花(一个点),同时记录每个点的Next( ...

  4. 【learning】一般图最大匹配——带花树

    问题描述 ​ 对于一个图\(G(V,E)\),当点对集\(S\)满足任意\((u,v)\in S\),均有\(u,v\in V,(u,v)\in E\),且\(S\)中没有点重复出现,我们称\(S\) ...

  5. UOJ #79 一般图最大匹配 带花树

    http://uoj.ac/problem/79 一般图和二分图的区别就是有奇环,带花树是在匈牙利算法的基础上对奇环进行缩点操作,复杂度似乎是O(mn)和匈牙利一样. 具体操作是一个一个点做类似匈牙利 ...

  6. 【UOJ 79】 一般图最大匹配 (✿带花树开花)

    从前一个和谐的班级,所有人都是搞OI的.有 n 个是男生,有 0 个是女生.男生编号分别为 1,…,n. 现在老师想把他们分成若干个两人小组写动态仙人掌,一个人负责搬砖另一个人负责吐槽.每个人至多属于 ...

  7. kuangbin带你飞 匹配问题 二分匹配 + 二分图多重匹配 + 二分图最大权匹配 + 一般图匹配带花树

    二分匹配:二分图的一些性质 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j ...

  8. URAL 1099. Work Scheduling (一般图匹配带花树)

    1099. Work Scheduling Time limit: 0.5 secondMemory limit: 64 MB There is certain amount of night gua ...

  9. HDU 4687 Boke and Tsukkomi (一般图匹配带花树)

    Boke and Tsukkomi Time Limit: 3000/3000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Othe ...

  10. URAL1099 Work Scheduling —— 一般图匹配带花树

    题目链接:https://vjudge.net/problem/URAL-1099 1099. Work Scheduling Time limit: 0.5 secondMemory limit: ...

随机推荐

  1. COM笔记-动态链接

    在实现了IUnknown之后,组件和客户之间只是一种非常松散的连接,这使用组件和客户各自可以发生变化而不会对对方造成什么影响. 下面讨论如何将组件放入到动态链接库(dll)中. 关于DLL更多内容可以 ...

  2. 基于WindowsService的WebSocket编程Demo

    一.什么是WebSocket WebSocket协议是基于TCP的一种新的网络协议.它实现了浏览器与服务器全双工(full-duplex)通信--允许服务器主动发送信息给客户端.说了半天也就是说有了它 ...

  3. 从元素抽取属性,文本和HTML

    问题 在解析获得一个Document实例对象,并查找到一些元素之后,你希望取得在这些元素中的数据. 方法 要取得一个属性的值,可以使用Node.attr(String key) 方法 对于一个元素中的 ...

  4. servlet通过响应头Content-Disposition实现文件下载效果

    package day08; import java.io.File; import java.io.FileInputStream; import java.io.IOException; impo ...

  5. 带有附件及图片正文的JavaMail邮件发送

    1 package javamail; 2 3 import java.io.UnsupportedEncodingException; 4 import java.util.Properties; ...

  6. Python - 面向对象编程 - 公共属性、保护属性、私有属性

    公共属性 在 Python 的类里面,所有属性和方法默认都是公共的 class PoloBlog: # 公共属性 sum = 0 # 构造方法 def __init__(self, name): se ...

  7. Docker容器 关于镜像构建的安全问题

    写在前面 确保容器中服务与应用安全是容器化演进的关键点.容器安全涉及到应用开发与维护的整个生命周期,本文主要从镜像构建的视角来看docker容器的一些安全问题及应对措施. 一.权限管理 1.避免以容器 ...

  8. n个容器取油问题再探

    在 韩信分油问题的拓展分析 里,最后给出了一般性的结论,即: 用 n (n > 1) 个不规则无刻度的容器从一个无穷大的油桶里取油,这些容器容量都为整数升,分别记为 a1, a2, ..., a ...

  9. 紫色飞猪的研发之旅--06go自定义状态码

    在实际开发中,需要前后端需要协商状态码,状态码用于后端返前端时使用.在一个团队中,定义的状态码讲道理应该是一致的,项目开始的起始阶段状态码应该是定义了个七七八八的,随着功能的叠加而不断增加.此系列将围 ...

  10. Spring Security进阶

    Spring Security进阶 1.连接数据库进行数据的验证 Spring Security进行身份验证或者权限控制时,用户名和密码应该要和数据库的进行比较才行,用户的各种信息我们从数据库中去获取 ...