POJ2182题解——线段树

2019-12-20

by juruoOIer

1.线段树简介(来源:百度百科)

线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点。
使用线段树可以快速的查找某一个节点在若干条线段中出现的次数,时间复杂度为O(logN)。而未优化的空间复杂度为2N,实际应用时一般还要开4N的数组以免越界,因此有时需要离散化让空间压缩。
 
2.线段树实际应用
上面的都是些基本的线段树结构,但只有这些并不能做什么,就好比一个程序有输入没输出,根本没有任何用处。
 
最简单的应用就是记录线段是否被覆盖,随时查询当前被覆盖线段的总长度。那么此时可以在结点结构中加入一个变量int count;代表当前结点代表的子树中被覆盖的线段长度和。这样就要在插入(删除)当中维护这个count值,于是当前的覆盖总值就是根节点的count值了。
 
另外也可以将count换成bool cover;支持查找一个结点或线段是否被覆盖。
 
实际上,通过在结点上记录不同的数据,线段树还可以完成很多不同的任务。例如,如果每次插入操作是在一条线段上每个位置均加k,而查询操作是计算一条线段上的总和,那么在结点上需要记录的值为sum。
 
这里会遇到一个问题:为了使所有sum值都保持正确,每一次插入操作可能要更新O(N)个sum值,从而使时间复杂度退化为O(N)。
 
解决方案是Lazy思想:对整个结点进行的操作,先在结点上做标记,而并非真正执行,直到根据查询操作的需要分成两部分。
 
根据Lazy思想,我们可以在不代表原线段的结点上增加一个值toadd,即为对这个结点,留待以后执行的插入操作k值的总和。对整个结点插入时,只更新sum和toadd值而不向下进行,这样时间复杂度可证明为O(logN)。
 
对一个toadd值为0的结点整个进行查询时,直接返回存储在其中的sum值;而若对toadd不为0的一部分进行查询,则要更新其左右子结点的sum值,然后把toadd值传递下去,再对这个查询本身,左右子结点分别递归下去。时间复杂度也是O(nlogN)。
 
3.代码实现
下面先给出线段树建树的代码:
void build_tree(int l,int r,int k)
{
tree[k].l=l;
tree[k].r=r;
tree[k].sum=r-l+;
if(l==r) return ;
int m=(l+r)>>;
build_tree(l,m,k<<);
build_tree(m+,r,(k<<)|);
}

这里使用结构体来完成二叉树的操作:

struct Tree
{
int l,r,sum;
}tree[*N];

最后,给出POJ2182的代码,用以讲解线段树:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=;
int ans[N],b[N];
int n;
struct Tree
{
int l,r,sum;
}tree[*N];
void build_tree(int l,int r,int k)
{
tree[k].l=l;
tree[k].r=r;
tree[k].sum=r-l+;
if(l==r) return ;
int m=(l+r)>>;
build_tree(l,m,k<<);
build_tree(m+,r,(k<<)|);
}
void solve(int num,int k,int i)
{
tree[k].sum--;
if(tree[k].l==tree[k].r)
{
ans[i]=tree[k].l;
return ;
}
if(num<=tree[*k].sum) solve(num,*k,i);
else solve(num-tree[*k].sum,*k+,i);
}
int main()
{
int i,j;
scanf("%d",&n);
for(i=;i<=n;i++) scanf("%d",&b[i]);
b[]=;
build_tree(,n,);
for(i=n;i>=;i--) solve(b[i]+,,i);
for(i=;i<=n;i++) printf("%d\n",ans[i]);
}

部分知识来源:百度百科

POJ2182题解——线段树的更多相关文章

  1. poj2182(线段树求序列第k小)

    题目链接:https://vjudge.net/problem/POJ-2182 题意:有n头牛,从1..n编号,乱序排成一列,给出第2..n个牛其前面有多少比它编号小的个数,记为a[i],求该序列的 ...

  2. luoguP5105 不强制在线的动态快速排序 [官方?]题解 线段树 / set

    不强制在线的动态快速排序 题解 算法一 按照题意模拟 维护一个数组,每次直接往数组后面依次添加\([l, r]\) 每次查询时,暴力地\(sort\)查询即可 复杂度\(O(10^9 * q)\),期 ...

  3. 理想乡题解 (线段树优化dp)

    题面 思路概述 首先,不难想到本题可以用动态规划来解,这里就省略是如何想到动态规划的了. 转移方程 f[i]=min(f[j]+1)(max(i-m,0)<=j<i 且j符合士兵限定) 注 ...

  4. POJ 3468 A Simple Problem with Integers(详细题解) 线段树

    这是个线段树题目,做之前必须要有些线段树基础才行不然你是很难理解的. 此题的难点就是在于你加的数要怎么加,加入你一直加到叶子节点的话,复杂度势必会很高的 具体思路 在增加时,如果要加的区间正好覆盖一个 ...

  5. [bzoj2752]高速公路 题解(线段树)

    2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 2102  Solved: 887[Submit] ...

  6. codedecision P1113 同颜色询问 题解 线段树动态开点

    题目描述:https://www.cnblogs.com/problems/p/11789930.html 题目链接:http://codedecision.com/problem/1113 这道题目 ...

  7. codedecision P1112 区间连续段 题解 线段树

    题目描述:https://www.cnblogs.com/problems/p/P1112.html 题目链接:http://codedecision.com/problem/1112 线段树区间操作 ...

  8. 【poj2828】Buy Tickets 线段树 插队问题

    [poj2828]Buy Tickets Description Railway tickets were difficult to buy around the Lunar New Year in ...

  9. Codeforces Round #254 (Div. 1) C. DZY Loves Colors 线段树

    题目链接: http://codeforces.com/problemset/problem/444/C J. DZY Loves Colors time limit per test:2 secon ...

随机推荐

  1. 扛把子组20191031-8 alpha week 1/2 Scrum立会报告+燃尽图 06

    此作业的要求参见:https://edu.cnblogs.com/campus/nenu/2019fall/homework/9916 一.小组情况 队名:扛把子 组长:孙晓宇 组员:宋晓丽 梁梦瑶 ...

  2. 2019-11-7:sql注入防御,webshell概念,学习笔记

    sql注入防护GPC,magic_quotes_gpc函数在php中的作用是判断解析用户提示的数据,如包括有:post.get.cookie过来的数据增加转义字符“\”,以确保这些数据不会引起程序,特 ...

  3. Apache Thrift 的魅力

    WhyApacheThrift 因为最近在项目中需要集成进来一个Python编写的机器学习算法,但是我的后端主要使用的是SpringCloud技术栈. 于是面临着异构语言之间的通信实现方式的抉择. 因 ...

  4. c#-PropertyChangingEventArgs

    MSDN 解释连接:https://msdn.microsoft.com/zh-cn/library/system.eventargs.aspx#inheritanceContinued[Serial ...

  5. 【前端】之jQuery基础知识

    jQuery 简介 在项目中引入jQuery: 去jQuery官网下载jQuery包:jquery-3.2.1.min.js 将下载的jQuery包添加到项目目录中 在标签下添加jQuery引用:&l ...

  6. Scrapy 框架 (学习笔记-1)

    环境: 1.windows 10 2.Python 3.7 3.Scrapy 1.7.3 4.mysql 5.5.53 一.Scrapy 安装 1. Scrapy:是一套基于Twisted的一部处理框 ...

  7. 2019-2020-3 20199317《Linux内核原理与分析》第三周作业

    第2章  操作系统是如何工作的 1  计算机的三大法宝      存储程序计算机:冯诺依曼结构 函数调用堆栈机制:记录调用的路径和参数的空间 中断机制:由CPU和内核代码共同实现了保存现场和恢复现场, ...

  8. Hyperledger Fabric手动生成CA证书搭建Fabric网络

    之前介绍了使用官方脚本自动化启动一个Fabric网络,并且所有的证书都是通过官方的命令行工具cryptogen直接生成网络中的所有节点的证书.在开发环境可以这么简单进行,但是生成环境下还是需要我们自定 ...

  9. 不服跑个分:ARM鲲鹏云服务器实战评测——华为云鲲鹏KC1实例 vs. 阿里云G5实例【华为云技术分享】

    原文链接:https://m.ithome.com/html/444828.htm 今年一月份,华为正式发布了鲲鹏920数据中心高性能处理器,该处理器兼容ARM架构,采用7纳米制造,最高支持64核,主 ...

  10. 转:轻松把玩HttpClient之封装HttpClient工具类(一)(现有网上分享中的最强大的工具类)

    搜了一下网络上别人封装的HttpClient,大部分特别简单,有一些看起来比较高级,但是用起来都不怎么好用.调用关系不清楚,结构有点混乱.所以也就萌生了自己封装HttpClient工具类的想法.要做就 ...