# 一、载入数据
import tensorflow as tf
import numpy as np
#导入tensorflow提供的读取MNIST的模块
import tensorflow.examples.tutorials.mnist.input_data as input_data #读取MNIST数据
mnist = input_data.read_data_sets("MNIST_data/",one_hot=True) #1.构建输入层
x = tf.placeholder(tf.float32,[None,784],name="X")
y = tf.placeholder(tf.float32,[None,10],name="Y") #2.构建隐藏层
H1_NN = 256 W1 = tf.Variable(tf.random_normal([784,H1_NN]))
b1 = tf.Variable(tf.zeros([H1_NN])) Y1 = tf.nn.relu(tf.matmul(x,W1) + b1) #3.构建输出层
W2 = tf.Variable(tf.random_normal([H1_NN,10]))
b2 = tf.Variable(tf.zeros([10])) forward = tf.matmul(Y1,W2) + b2
pred = tf.nn.softmax(forward) #1.构建输入层
x = tf.placeholder(tf.float32,[None,784],name="X")
y = tf.placeholder(tf.float32,[None,10],name="Y") #2.构建隐藏层
H1_NN = 256 W1 = tf.Variable(tf.random_normal([784,H1_NN]))
b1 = tf.Variable(tf.zeros([H1_NN])) Y1 = tf.nn.relu(tf.matmul(x,W1) + b1) #3.构建输出层
W2 = tf.Variable(tf.random_normal([H1_NN,10]))
b2 = tf.Variable(tf.zeros([10])) forward = tf.matmul(Y1,W2) + b2
pred = tf.nn.softmax(forward) # 评估模型
accu_test = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
print("Test Accuracy:",accu_test) # 应用模型
# 由于pred预测结果是one-hot编码格式,所以需要转换为0~9数字
prediction_result=sess.run(tf.argmax(pred,1),feed_dict={x:mnist.test.images}) #查看预测结果中的前10项
prediction_result[0:10] # 找出预测结果
compare_lists = prediction_result==np.argmax(mnist.test.labels,1)
print(compare_lists)
err_lists = [i for i in range(len(compare_lists)) if compare_lists[i]==False]
print(err_lists,len(err_lists)) # 定义一个输出错误分类的函数
def print_predict_errs(labels,prediction): #标签列表、预测值列表
count=0
compare_lists = (prediction==np.argmax(labels,1))
err_lists = [i for i in range(len(compare_lists)) if compare_lists[i]==False]
for x in err_lists:
print("index="+str(x)+"标签值=",np.argmax(labels[x]),"预测值=",prediction[x])
count = count + 1
print("总计:"+str(count)) print_predict_errs(labels=mnist.test.labels,prediction=prediction_result) # 可视化查看预测错误的样本
import matplotlib.pyplot as plt
#定义可视化函数
def plot_images_labels_prediction(images,labels,prediction,index,num=10): #图像列表、标签列表、预测值列表、从第index个开始显示、缺省一次显示十幅
fig=plt.gcf() #获取当前图表,Get Current figure
fig.set_size_inches(10,12) #1英寸等于2.54cm
if num>25:
num = 25 #最多显示25个子图
for i in range(0,num):
ax = plt.subplot(5,5,i+1) #获取当前要处理的子图
ax.imshow(np.reshape(images[index],(28,28)), #显示第index个图象
cmap='binary')
title = "label=" + str(np.argmax(labels[index])) #构建该图上要显示的title信息
if len(prediction)>0:
title += ",predict=" + str(prediction[index]) ax.set_title(title,fontsize=10) #显示图上的title信息
ax.set_xticks([]); #不显示坐标轴
ax.set_yticks([])
index += 1
plt.show()
plot_images_labels_prediction(mnist.test.images,mnist.test.labels,prediction_result,610,20)

                                  ————代码内容来源于《深度学习应用开发Tensorflow实践》

MNIST手写数字识别进阶:多层神经网络及应用(1)的更多相关文章

  1. MNIST手写数字识别:卷积神经网络

    代码 import torch from torchvision import datasets from torch.utils.data import DataLoader import torc ...

  2. TensorFlow——MNIST手写数字识别

    MNIST手写数字识别 MNIST数据集介绍和下载:http://yann.lecun.com/exdb/mnist/   一.数据集介绍: MNIST是一个入门级的计算机视觉数据集 下载下来的数据集 ...

  3. Tensorflow实现MNIST手写数字识别

    之前我们讲了神经网络的起源.单层神经网络.多层神经网络的搭建过程.搭建时要注意到的具体问题.以及解决这些问题的具体方法.本文将通过一个经典的案例:MNIST手写数字识别,以代码的形式来为大家梳理一遍神 ...

  4. Android+TensorFlow+CNN+MNIST 手写数字识别实现

    Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...

  5. 基于tensorflow的MNIST手写数字识别(二)--入门篇

    http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...

  6. 第三节,CNN案例-mnist手写数字识别

    卷积:神经网络不再是对每个像素做处理,而是对一小块区域的处理,这种做法加强了图像信息的连续性,使得神经网络看到的是一个图像,而非一个点,同时也加深了神经网络对图像的理解,卷积神经网络有一个批量过滤器, ...

  7. 持久化的基于L2正则化和平均滑动模型的MNIST手写数字识别模型

    持久化的基于L2正则化和平均滑动模型的MNIST手写数字识别模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献Tensorflow实战Google深度学习框架 实验平台: Tens ...

  8. 基于TensorFlow的MNIST手写数字识别-初级

    一:MNIST数据集    下载地址 MNIST是一个包含很多手写数字图片的数据集,一共4个二进制压缩文件 分别是test set images,test set labels,training se ...

  9. mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)

    前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...

随机推荐

  1. [PHP] 解决php中上传大文件的错误

    修改nginx配置文件,下面这个参数client_max_body_size 110M; 修改php配置文件中下面两个参数在php.ini中找到下面两个配置,配置项给改大,如果找不到php.ini的位 ...

  2. May 19th, 2019. Week 21st, Sunday

    Fight for what matters to you. 为自己珍视的东西奋斗吧! We all want to make our life goals true, and we all expe ...

  3. go语言设计模式之proxy

    代理模式,单元测试用例真的写得详细, 受教~ proxy.go package proxy import ( //"errors" "fmt" ) type U ...

  4. qtdomdocument找不到

  5. MYSQL的备份与恢复--逻辑备份mysqldump

    目录 0.备份与恢复概述 1.逻辑备份-完整备份与恢复 2.逻辑备份-增量备份与恢复 (1)环境准备 (2)恢复全量数据 (3)恢复增量备份 3.新来的开发妹子删了库! (1)模拟环境准备 (2)全备 ...

  6. 201871010113-刘兴瑞《面向对象程序设计(java)》第十五周学习总结

    项目 内容 这个作业属于哪个课程 <任课教师博客主页链接>https://www.cnblogs.com/nwnu-daizh/ 这个作业的要求在哪里 <作业链接地址>http ...

  7. [LeetCode] 42. Trapping Rain Water 收集雨水

    Given n non-negative integers representing an elevation map where the width of each bar is 1, comput ...

  8. vscode源码分析【一】从源码运行vscode

    安装git,nodejs和yarn 安装Python27,3.x版本的不行,确保它在你的环境变量里: 安装gulp npm install --global gulp-cli 安装windows bu ...

  9. 纠错:Feign 没用 短连接

    Feign 默认不是 短连接 疯狂创客圈 Java 高并发[ 亿级流量聊天室实战]实战系列 [博客园总入口 ] 疯狂创客圈(笔者尼恩创建的高并发研习社群)Springcloud 高并发系列文章,将为大 ...

  10. 《细说PHP》第四版 样章 第二章 PHP的应用与发展 2

    2.2  PHP的应用 任何一种主流的编程语言,几乎都可以开发任何类型的软件.编程语言就是一种开发工具,而选择适合的工具去做适合的事儿,才能体现其应用价值.PHP最主要的应用,就是与数据库交互来开发W ...