【51Nod1584】加权约数和(数论)
【51Nod1584】加权约数和(数论)
题面
题解
要求的是$$\sum_{i=1}n\sum_{j=1}n max(i,j)\sigma(ij)$$
这个\(max\)太讨厌了,直接枚举一半乘个二。
\]
后面这一半可以直接预处理,只需要把\(i\)分解,可以做到调和级数的复杂度。
只考虑前面这一半,显然只需要考虑的是\(\sigma(ij)\)这个东西。
那么我们考虑在\(i\)中枚举一个约数,在\(j\)中枚举一个约数,然后把这两个约数合并一下,看看能不能让每个约数只被计算一次。
\]
证明的话,大概就是我们的目标是让每个约数只被计算一次,首先在\(i\)中枚举一个约数肯定没有问题,在\(j\)中枚举一个质因数也没有问题。对于\(uv\)这个数而言,我们把只在\(i\)中有的因子和只在\(j\)中有的因子给丢掉,只考虑在\(i,j\)中都含有的因子\(u',v'\),对于一个数\(uv\)而言,可能算重的情况是\(u'\)从\(v'\)那里抢走了一个质因子,而此时\(\frac{j}{v}\)就会对应的乘上那个质因子,使得\(gcd\neq 1\),所以每个数只会被计算一次。
有了这个式子就很好搞了,首先把这个式子换一个形式:
\]
带回去得到:
\]
考虑对于每一个\(i\)分别计算答案,所以我们设
f[n]&=n\sum_{j=1}^n\sum_{u|n}\sum_{v|j}[gcd(u,v)=1]\frac{uj}{v}\\
&=n\sum_{j=1}^n \sum_{u|n}\sum_{v|j}\frac{uj}{v}\sum_{k|u,k|v}\mu(k)\\
&=n\sum_{j=1}^n\sum_{k|n,k|j}\mu(k)\sum_{k|u,u|n}\sum_{k|v,v|j}\frac{uj}{v}\\
&=n\sum_{j=1}^n\sum_{k|n,k|j}\mu(k)(k\sigma(\frac{n}{k}))\sigma(\frac{j}{k})\\
&=n\sum_{k|n}\mu(k)k\sigma(\frac{n}{k})\sum_{i=1}^{n/k}\sigma(i)
\end{aligned}\]
然后就是前缀和计算就行了。
所有东西可以线性筛,中间要求逆就直接快速幂了。。。。
#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
#define MOD 1000000007
#define MAX 1000100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
bool zs[MAX];
int pri[MAX],tot;
int mu[MAX],sig[MAX],ssig[MAX],pw[MAX],spw[MAX],dpw[MAX],dspw[MAX],dsig[MAX];
int f[MAX],s[MAX];
void Sieve(int n)
{
mu[1]=1;dsig[1]=sig[1]=1;
for(int i=2;i<=n;++i)
{
if(!zs[i])
{
pri[++tot]=i,mu[i]=MOD-1;
sig[i]=i+1,pw[i]=i,spw[i]=i+1;
dsig[i]=dspw[i]=(1+i+1ll*i*i)%MOD;dpw[i]=1ll*i*i%MOD;
}
for(int j=1;j<=tot&&i*pri[j]<=n;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])
{
mu[i*pri[j]]=MOD-mu[i];
sig[i*pri[j]]=1ll*sig[i]*sig[pri[j]]%MOD;
pw[i*pri[j]]=pri[j],spw[i*pri[j]]=1+pri[j];
dsig[i*pri[j]]=1ll*dsig[i]*dsig[pri[j]]%MOD;
dpw[i*pri[j]]=dpw[pri[j]];
dspw[i*pri[j]]=dspw[pri[j]];
}
else
{
mu[i*pri[j]]=0;
sig[i*pri[j]]=1ll*sig[i]*fpow(spw[i],MOD-2)%MOD*(spw[i]+pw[i]*pri[j])%MOD;
pw[i*pri[j]]=pw[i]*pri[j];
spw[i*pri[j]]=(spw[i]+pw[i]*pri[j])%MOD;
dspw[i*pri[j]]=(dspw[i]+1ll*dpw[i]*pri[j]%MOD+1ll*dpw[i]*pri[j]%MOD*pri[j]%MOD)%MOD;
dsig[i*pri[j]]=1ll*dsig[i]*fpow(dspw[i],MOD-2)%MOD*dspw[i*pri[j]]%MOD;
dpw[i*pri[j]]=1ll*dpw[i]*pri[j]%MOD*pri[j]%MOD;
break;
}
}
}
for(int i=1;i<=n;++i)dsig[i]=1ll*dsig[i]%MOD*i%MOD;
for(int i=1;i<=n;++i)ssig[i]=(ssig[i-1]+sig[i])%MOD;
for(int i=1;i<=n;++i)
{
if(mu[i])
for(int j=i;j<=n;j+=i)
f[j]=(f[j]+1ll*mu[i]*i%MOD*sig[j/i]%MOD*ssig[j/i])%MOD;
f[i]=1ll*f[i]*i%MOD;s[i]=(s[i-1]+2ll*f[i]+MOD-dsig[i])%MOD;
}
}
int main()
{
Sieve(MAX-1);
int T=read();
for(int i=1;i<=T;++i)
printf("Case #%d: %d\n",i,s[read()]);
return 0;
}
【51Nod1584】加权约数和(数论)的更多相关文章
- 51Nod1584 加权约数和
这题其实就是反演一波就好了(那你还推了一下午+一晚上),不过第一次碰到\(O(n\log n)\)预处理分块和式的方法-- 不知为啥我跟唐教主的题解推的式子不太一样--(虽然本质上可能是相同的吧) 那 ...
- 51nod1584加权约数和
题目大意: 求: \[ \sum_{i-1}^n\sum_{j=1}^nmax(i,j)\sigma(i*j) \] 题解 对于这个\(\max\),套路的把它转化成: \[ 2*\sum_{i=1} ...
- 51NOD 1584 加权约数和 [莫比乌斯反演 转化 Trick]
1584 加权约数和 题意:求\(\sum_{i=1}^{N} \sum_{j=1}^{N} {\max(i,j)\cdot \sigma(i\cdot j)}\) 多组数据\(n \le 10^6, ...
- 51nod 1584 加权约数和 约数和函数小trick 莫比乌斯反演
LINK:加权约数和 我曾经一度认为莫比乌斯反演都是板子题. 做过这道题我认输了 不是什么东西都是板子. 一个trick 设\(s(x)\)为x的约数和函数. 有 \(s(i\cdot j)=\sum ...
- 洛谷P1403 [AHOI2005] 约数研究 [数论分块]
题目传送门 约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工作取得了不错的成绩, ...
- BZOJ-1968 COMMON 约数研究 数论+奇怪的姿势
1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1513 Solved: 1154 [Submit] ...
- 51nod 约数和(数论)
题目链接: 约数和 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 有三个下标从1到n的数组a.b.c. a数组初始全为0. b[i]=∑j|ia[j] c[i]=∑j|ib[j] ...
- 51nod“省选”模测第二场 B 异或约数和(数论分块)
题意 题目链接 Sol 这题是来搞笑的吧.. 考虑一个数的贡献是\(O(\frac{N}{i})\) 直接数论分块. #include<bits/stdc++.h> #define Pai ...
- [51Nod 1584] 加权约数和
Description 在整理以前的试题时,他发现了这样一道题目:"求 \(\sum\sigma(i)\),其中 \(1≤i≤N\),\(σ(i)\) 表示 \(i\) 的约数之和.&quo ...
随机推荐
- ThinkPHP调用其他控制器的方法,助手函数action()
用法: $a = action('admin/user/detail',['id'=>10]); var_dump($a) 表示在其他控制器调用user控制器的detail方法,传了一个参数id
- opencv---(腐蚀、膨胀、边缘检测、轮廓检索、凸包、多边形拟合)
一.腐蚀(Erode) 取符合模板的点, 用区域最小值代替中心位置值(锚点) 作用: 平滑对象边缘.弱化对象之间的连接. opencv 中相关函数:(erode) // C++ /** shape: ...
- 【数据结构】什么是二叉查找树(BST)
什么是二叉查找树(BST) 1. 什么是BST 对于二叉树中的每个节点X,它的左子树中所有项的值都小于X中的项,它的右子树中所有项的值大于X中的项.这样的二叉树是二叉查找树. 以上是一颗二叉查找树,其 ...
- WebShell代码分析溯源(三)
WebShell代码分析溯源(三) 一.一句话变形马样本 <?php $g = array('','s');$gg = a.$g[1].ser.chr('116');@$gg($_POST[ge ...
- js获取时间,循环执行任务,延迟执行任务
一.获取时间 核心方法创建一个时间对象:new Date() 时间对象相关操作 时间对象.函数名 函数名 功能 getYear() 获取四位数的年份 getMonth() 获取2位数的月数, 这个是从 ...
- python-pyppeteer模块使用汇总
一.简单代码示例 import asyncio from pyppeteer import launch async def main(): browser = await launch() page ...
- PHP+jQuery开发简单的翻牌抽奖实例
PHP+jQuery开发简单的翻牌抽奖实例,实现流程:页面放置6个方块作为奖项,当抽奖者点击某一块时,方块翻转到背面,显示中奖信息,这个奖品是随机的,不是固定的. 在页面上放置6个奖项: <ul ...
- FCC---Use the CSS Transform scale Property to Change the Size of an Element
To change the scale of an element, CSS has the transform property, along with its scale() function. ...
- 使用Settings sync同步VS Code配置
使用Settings sync同步VS Code配置 因为要在多台电脑上使用VSCode,想要简单地管理VSCode地配置,不用每次手动去一一配置,保持多个开发环境的同步,于是使用Settings s ...
- sync.Map与Concurrent Map
1. sync.Map 1.1. map并发不安全 go1.6以后map有了并发的安全检查,所以如果在并发环境中读写map就会报错 func unsafeMap() { // 创建一个map对象 m ...