3517: 翻硬币

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 281  Solved: 211
[Submit][Status][Discuss]

Description

有一个nn列的棋盘,每个格子上都有一个硬币,且n为偶数。每个硬币要么是正面朝上,要么是反面朝上。每次操作你可以选定一个格子(x,y),然后将第x行和第y列的所有硬币都翻面。求将所有硬币都变成同一个面最少需要的操作数。

Input

第一行包含一个正整数n
接下来n行,每行包含一个长度为n的01字符串,表示棋盘上硬币的状态。

Output

仅包含一行,为最少需要的操作数。

Sample Input

4
0101
1000
0010
0101

Sample Output

2

HINT

【样例说明】

对(2,3)和(3,1)进行操作,最后全变成1。

【数据规模】

对于100%的数据,n ≤ 1,000。

  上来一看,第一反应,异或数学题,想了半天如何异或也没想出来,问呵呵酵母菌,他说他觉得是图论WTF?!图论有几个O(n)算法能在这道题用上的。

  于是乎看了一眼题解:解异或方程组……

  一个点最多翻一遍,这话不用再说了吧……

  让我们先从都翻为0开始说起

  我们设x[i][j]为第i,j个点是否要翻,a[i][j]为该点初始状态,则x[1][j]^x[2][j]^……^x[n][j]^x[i][1]^x[i][2]^x[i][m]^x[i][j]=a[i][j]。

  我们把第i行和第j列所有的点按照上式列出方程组并合并, 由于n为偶数,则可以化为:

    x[i][j]=a[1][j]^a[2][j]^……^a[n][j]^a[i][1]^a[i][2]^……^a[i][m]^a[i][j]。

  那么我们只要对于每一行,每一列n^2预处理出他们的异或和再相加就好了。

  至于都为1吗?由于n是偶数,我们只要把每一个点是否翻的状态取反就是答案。

 #include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#include <cmath>
#include <map>
#define N 1005
using namespace std;
int n,a[N][N];
char b[N];
int sum[][N];
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%s",b+);
for(int j=;j<=n;j++)
{
a[i][j]=b[j]-'';
}
}
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
sum[][i]^=a[i][j];
sum[][j]^=a[i][j];
}
}
int ans=;
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
int t=sum[][i]^sum[][j];
t^=a[i][j];
ans+=t;
}
}
ans=min(ans,n*n-ans);
printf("%d\n",ans);
return ;
}

Bzoj3517 翻硬币题解 解异或方程组的更多相关文章

  1. 【BZOJ】2466: [中山市选2009]树 高斯消元解异或方程组

    [题意]给定一棵树的灯,按一次x改变与x距离<=1的点的状态,求全0到全1的最少次数.n<=100. [算法]高斯消元解异或方程组 [题解]设f[i]=0/1表示是否按第i个点的按钮,根据 ...

  2. bzoj千题计划187:bzoj1770: [Usaco2009 Nov]lights 燈 (高斯消元解异或方程组+枚举自由元)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1770 a[i][j] 表示i对j有影响 高斯消元解异或方程组 然后dfs枚举自由元确定最优解 #in ...

  3. bzoj千题计划105:bzoj3503: [Cqoi2014]和谐矩阵(高斯消元法解异或方程组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3503 b[i][j] 表示i对j是否有影响 高斯消元解异或方程组 bitset优化 #include ...

  4. POJ 1222 EXTENDED LIGHTS OUT(高斯消元解异或方程组)

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10835   Accepted: 6 ...

  5. poj1222(高斯消元法解异或方程组+开关问题)

    题目链接:https://vjudge.net/problem/POJ-1222 题意:给定一个5×6的01矩阵,改变一个点的状态时它上下左右包括它自己的状态都会翻转,因为翻转2次等价与没有翻转,那么 ...

  6. bzoj3517 翻硬币

    题意 有一个n行n列的棋盘,每个格子上都有一个硬币,且n为偶数.每个硬币要么是正面朝上,要么是反面朝上.每次操作你可以选定一个格子(x,y),然后将第x行和第y列的所有硬币都翻面.求将所有硬币都变成同 ...

  7. fzu1704(高斯消元法解异或方程组+高精度输出)

    题目链接:https://vjudge.net/problem/FZU-1704 题意:经典开关问题,求使得灯全0的方案数. 思路:题目保证至少存在一种方案,即方程组一定有解,那么套上高斯消元法的板子 ...

  8. bzoj千题计划188:bzoj1923: [Sdoi2010]外星千足虫 (高斯—若尔当消元法解异或方程组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1923 #include<cstdio> #include<cstring> ...

  9. 高斯—若尔当(约当)消元法解异或方程组+bitset优化模板

    高斯消元法是将矩阵化为上三角矩阵 高斯—若尔当消元法是 选定主元后,将主元化为1,枚举除主元之外的所有行进行消元 即将矩阵化为对角矩阵,这样不用回代 bitset<N>a[N]; int ...

随机推荐

  1. Python爬虫: "追新番"网站资源链接爬取

    “追新番”网站 追新番网站提供最新的日剧和日影下载地址,更新比较快. 个人比较喜欢看日剧,因此想着通过爬取该网站,做一个资源地图 可以查看网站到底有哪些日剧,并且随时可以下载. 资源地图 爬取的资源地 ...

  2. 对c&c++源文件和头文件分开的好处的一点认识

    对c&c++程序来说,基本上来说都是要把源文件和头文件分别编写.一般都是代表一个基本功能的源文件引用相应的头文件. 一个 相关功能的模块可能有若干对源文件和头文件组成.这是基于组件编程的核心. ...

  3. 最小二乘法 good

    最小二乘法也称为最小平方法,是一种数据优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配. 最小二乘法最初由高尔顿在创立回归分析的时候提出,现在已经成为探索变量间关系最重要的方法,最小二乘法根据 ...

  4. ABAP中SPLIT关键字 当分隔符位于字符串首尾时

    使用SPLIT关键字将一个字符串按某个分隔符拆分,如果分隔符穿插在字符串中间(即首尾字符均不是分隔符的情况),我们很容易知道拆分后的结果,但如果分隔符恰好位于字符串首或者末尾呢? 如下面的代码所示,在 ...

  5. Servlet 3.0异步特性初探

    Servlet 是 Java 为了编写服务端程序而定义的一个接口规范,在 Servlet 3.0 以后支持了异步的操作. 最近项目添加了一个代码热部署的功能,在客户端输入信号,信号到达 Web 服务器 ...

  6. 工作中vue项目前后端分离,调用后端本地接口出现跨域问题的完美解决

    在我们实际开发中,选择不错的前端框架可以为我们省掉很多时间,当然,有时我们也会遇到很多坑. 最近在做vue项目时就遇到了跨域问题,一般来说,出现跨域我们第一反应使用jsonp,但是这个只支持get请求 ...

  7. iOS开发(5):设备唯一标识与全局变量

    这里记录两个iOS开发中经常用到的知识点,一个是唯一标识,一个是全局变量. (1)唯一标识 唯一标识一台设备(比如iPhone.iPad等)是一个基本的实现与业务上的需求,因为这个唯一标识在许多场景都 ...

  8. linux配置多个tomcat

    1.修改tomcat目录下面conf/server.xml,修改shutdown的port和http port 2.修改bin/catalina.sh 在最前面加上 export CATALINA_B ...

  9. Android之LinearLayout布局下怎么让按钮固定在底部

    <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android=&quo ...

  10. Google浏览器插件之闪存过滤器

    一件很有意思的事情引发的无聊尝试. 博客园有个很有趣的功能,就是闪存,翻阅到07年园长对闪存的定义:      记录一闪而过的想法,高兴或者不高兴都可以发一下.我用这个一直以来的想法就是,想到点啥发点 ...