bzoj1812 [IOI2005]riv河流
problem
给出一棵树,每个点有点权,每条边有边权。0号点为根,每个点的代价是这个点的点权\(\times\)该点到根路径上的边权和。
现在可以选择最多K个点。使得每个点的代价变为:这个点的点权\(\times\)改点到最近的被选中的一个祖先的边权和。
问所有点的代价和最小为多少。
solution
用\(g[i][j]\)表示以i为根的子树,强制选i,最大的贡献(这里的贡献是指比什么也不选所减少的代价。)
最终答案肯定就是初始代价-g[0][k]
考虑怎么维护出\(g\)。用\(f[i][j]\)表示以\(i\)为根的子树,\(i\)可选可不选。然后树形背包一下就可以求出g。
考虑怎么维护f。每当枚举到一个根的时候,就重新dfs一遍这棵子树,初始f[x][0]=w[x]*dep[u]。dep[u]表示从枚举的根到0号点的距离。然后同样方法背包一遍,就可以维护处\(f\)。
把j写成k调了一上午。。。。
code
/*
* @Author: wxyww
* @Date: 2019-12-21 10:08:12
* @Last Modified time: 2019-12-21 11:04:12
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<ctime>
using namespace std;
typedef long long ll;
const int N = 110;
ll read() {
ll x = 0,f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1; c = getchar();
}
while(c >= '0' && c <= '9') {
x = x * 10 + c - '0'; c = getchar();
}
return x * f;
}
int siz[N],f[N][55],g[N][N],dep[N],w[N],n,K;
struct node {
int v,nxt;
}e[N];
int head[N],ejs;
void add(int u,int v) {
e[++ejs].v = v;e[ejs].nxt = head[u];head[u] = ejs;
}
void dp(int u,int W) {
f[u][0] = W * w[u];
for(int i = head[u];i;i = e[i].nxt) {
int v = e[i].v;
dp(v,W);
for(int j = min(K,siz[u]);j >= 0;--j) {
for(int k = 0;k <= min(j,siz[v]);++k) {
f[u][j] = max(f[u][j],f[v][k] + f[u][j - k]);
}
}
}
for(int i = 1;i <= K;++i) f[u][i] = max(f[u][i],g[u][i]);//在算上强制选的答案
}
void dfs(int u) {
siz[u] = 1;
for(int i = head[u];i;i = e[i].nxt) {
dep[e[i].v] += dep[u];
dfs(e[i].v);
siz[u] += siz[e[i].v];
}
g[u][1] = dep[u] * w[u];
memset(f,0,sizeof(f));
for(int i = head[u];i;i = e[i].nxt) {
int v = e[i].v;
dp(v,dep[u]);
for(int j = min(K,siz[u]);j >= 1;--j) {
for(int k = 0;k < j;++k) {
g[u][j] = max(g[u][j],g[u][j - k] + f[v][k]);
}
}
}
// if(u == 1) cout<<g[1][1]<<endl;
}
int main() {
// freopen("1.in","r",stdin);
n = read(),K = read();
++K;
for(int i = 1;i <= n;++i) {
w[i] = read();int u = read();add(u,i);
dep[i] = read();
}
dfs(0);
int ans = 0;
for(int i = 1;i <= K;++i) ans = max(ans,g[0][i]);
// cout<<g[2][1];
for(int i = 1;i <= n;++i) ans -= dep[i] * w[i];
cout<<-ans<<endl;
return 0;
}
bzoj1812 [IOI2005]riv河流的更多相关文章
- bzoj1812 [Ioi2005]riv
riv 几乎整个Byteland王国都被森林和河流所覆盖.小点的河汇聚到一起,形成了稍大点的河.就这样,所有的河水都汇聚并流进了一条大河,最后这条大河流进了大海.这条大河的入海口处有一个村庄--名叫B ...
- [LUOGU] P3354 [IOI2005]Riv 河流
题目描述 几乎整个Byteland王国都被森林和河流所覆盖.小点的河汇聚到一起,形成了稍大点的河.就这样,所有的河水都汇聚并流进了一条大河,最后这条大河流进了大海.这条大河的入海口处有一个村庄--名叫 ...
- BZOJ.1812.[IOI2005]Riv 河流(树形背包)
BZOJ 洛谷 这个数据范围..考虑暴力一些把各种信息都记下来.不妨直接令\(f[i][j][k][0/1]\)表示当前为点\(i\),离\(i\)最近的建了伐木场的\(i\)的祖先为\(j\),\( ...
- P3354 [IOI2005]Riv 河流
树形dp,设f[i][j][k]表示第i个点的子树中选择j个点作为伐木场,而且k是建了伐木场的最浅的i的祖先的情况下,最小的收益. 这种题还要练一下,咕咕 然后转移可以n4方做. // luogu-j ...
- BZOJ1812: [Ioi2005]riv(树形dp)
题意 题目链接 Sol 首先一个很显然的思路是直接用\(f[i][j] / g[i][j]\)表示\(i\)的子树中选了\(j\)个节点,该节点是否选的最小权值.但是直接这样然后按照树形背包的套路转移 ...
- 【[IOI2005]Riv 河流】
趁魏佬去英语演讲了,赶快%%%%%%%%%%%%%%魏佬 基本上是照着魏佬的代码写的 这其实还是一个树上背包 我们用\(dp[i][j][k]\)表示在以\(i\)为根的子树里,我们修建\(k\)个伐 ...
- 洛谷P3354 [IOI2005]Riv 河流——“承诺”DP
题目:https://www.luogu.org/problemnew/show/P3354 状态中要记录一个“承诺”,只需相同承诺之间相互转移即可: 然后就是树形DP的套路了. 代码如下: #inc ...
- [IOI2005]Riv 河流
https://www.zybuluo.com/ysner/note/1300088 题面 有一棵\(n\)个点的树,现在在上面放\(k\)个标记,使得每个点的权值乘上自己到最近的标记祖先的距离的和最 ...
- [IOI2005]Riv河流
题目链接:洛谷,BZOJ 前置知识:莫得 题解 直接考虑dp.首先想法是设状态 \(dp[u][i]\) 表示u的子树内建 \(i\) 个伐木场且子树内木头都运到某个伐木场的最小花费.发现这样的状态是 ...
随机推荐
- BIM工程信息管理系统-EF实体框架数据操作基类
EF实体框架数据操作基类主要是规范增.改.查.分页.Lambda表达式条件处理,以及异步操作等特性,这样能够尽可能的符合基类这个特殊类的定义,实现功能接口的最大化重用和统一. 1.程序代码 /// & ...
- MySQL Error Log 文件丢失导致The server quit without updating PID file启动失败的场景
今天在做mysql sniff测试的时候,中间重启MySQL实例的过程中,出现了"The server quit without updating PID file"这个经典的错误 ...
- 分组排序函数——row_number()
1.MySQL8.0以上版本 用法1:无分组排序 Row_number() OVER(ORDER BY 字段 DESC)例如:Row_number() OVER(ORDER BY 学生成绩 DESC) ...
- 017.Kubernetes二进制部署检查集群
一 验证集群功能 1.1 检查节点状态 [root@k8smaster01 ~]# kubectl get nodes 1.2 创建测试文件 [root@k8smaster01 ~]# cd /opt ...
- 池化技术(二)HikariCP是如何管理数据库连接的?
基于依赖程序的版本信息:HikariCP:3.3.1 驱动程序mysql-connector-java:8.0.17 上一篇:Druid是如何管理数据库连接的 零.类图和流 ...
- Node.js实现图片上传功能
node接口实现 const express = require('express') const mysql = require('mysql') const cors = require('cor ...
- Violet 6 杯省选模拟赛 蒲公英
https://www.luogu.com.cn/problem/P4168 题目 给$n$个数字,有$m$次询问,问$a_l, a_{l+1} , \dots , a_r$的众数是什么, $1\le ...
- Ubuntu18.04 设置开机进入命令行模式
首先来了解下启动级别(Runlevel): 指 Unix 或 类 Unix 操作系统下不同的运行模式,运行级别通常分为 7 级: 运行级别 0:系统停机状态,系统默认运行级别不能设为0,否则不能正常启 ...
- redis 事务(悲观锁和乐观锁)
MULTI 开启事务,后续的命令会被加入到同一个事务中 事务中的操作会发送给客服端,但是不会立即执行,而是将操作放到了该事务对应的一个队列中,服务端返回QUEQUD EXEC 执行EXEC后,事务中的 ...
- kafka速度快的原因
我们都知道Kafka非常快,比绝大多数的市场上其他消息中间件都要快.这里来研究下那么为什么Kafka那么快(当然不会是因为它用了Scala). Kafka的消息是保存或缓存在磁盘上的,一般认为在磁盘上 ...