题目链接

problem

给出一棵树,每个点有点权,每条边有边权。0号点为根,每个点的代价是这个点的点权\(\times\)该点到根路径上的边权和。

现在可以选择最多K个点。使得每个点的代价变为:这个点的点权\(\times\)改点到最近的被选中的一个祖先的边权和。

问所有点的代价和最小为多少。

solution

用\(g[i][j]\)表示以i为根的子树,强制选i,最大的贡献(这里的贡献是指比什么也不选所减少的代价。)

最终答案肯定就是初始代价-g[0][k]

考虑怎么维护出\(g\)。用\(f[i][j]\)表示以\(i\)为根的子树,\(i\)可选可不选。然后树形背包一下就可以求出g。

考虑怎么维护f。每当枚举到一个根的时候,就重新dfs一遍这棵子树,初始f[x][0]=w[x]*dep[u]。dep[u]表示从枚举的根到0号点的距离。然后同样方法背包一遍,就可以维护处\(f\)。

把j写成k调了一上午。。。。

code

/*
* @Author: wxyww
* @Date: 2019-12-21 10:08:12
* @Last Modified time: 2019-12-21 11:04:12
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<ctime>
using namespace std;
typedef long long ll;
const int N = 110;
ll read() {
ll x = 0,f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1; c = getchar();
}
while(c >= '0' && c <= '9') {
x = x * 10 + c - '0'; c = getchar();
}
return x * f;
}
int siz[N],f[N][55],g[N][N],dep[N],w[N],n,K;
struct node {
int v,nxt;
}e[N];
int head[N],ejs;
void add(int u,int v) {
e[++ejs].v = v;e[ejs].nxt = head[u];head[u] = ejs;
}
void dp(int u,int W) {
f[u][0] = W * w[u];
for(int i = head[u];i;i = e[i].nxt) {
int v = e[i].v;
dp(v,W);
for(int j = min(K,siz[u]);j >= 0;--j) {
for(int k = 0;k <= min(j,siz[v]);++k) {
f[u][j] = max(f[u][j],f[v][k] + f[u][j - k]);
}
}
}
for(int i = 1;i <= K;++i) f[u][i] = max(f[u][i],g[u][i]);//在算上强制选的答案
}
void dfs(int u) {
siz[u] = 1;
for(int i = head[u];i;i = e[i].nxt) {
dep[e[i].v] += dep[u];
dfs(e[i].v);
siz[u] += siz[e[i].v];
} g[u][1] = dep[u] * w[u]; memset(f,0,sizeof(f)); for(int i = head[u];i;i = e[i].nxt) {
int v = e[i].v;
dp(v,dep[u]);
for(int j = min(K,siz[u]);j >= 1;--j) {
for(int k = 0;k < j;++k) {
g[u][j] = max(g[u][j],g[u][j - k] + f[v][k]);
}
}
}
// if(u == 1) cout<<g[1][1]<<endl;
}
int main() {
// freopen("1.in","r",stdin);
n = read(),K = read();
++K;
for(int i = 1;i <= n;++i) {
w[i] = read();int u = read();add(u,i);
dep[i] = read();
}
dfs(0);
int ans = 0;
for(int i = 1;i <= K;++i) ans = max(ans,g[0][i]);
// cout<<g[2][1];
for(int i = 1;i <= n;++i) ans -= dep[i] * w[i];
cout<<-ans<<endl;
return 0;
}

bzoj1812 [IOI2005]riv河流的更多相关文章

  1. bzoj1812 [Ioi2005]riv

    riv 几乎整个Byteland王国都被森林和河流所覆盖.小点的河汇聚到一起,形成了稍大点的河.就这样,所有的河水都汇聚并流进了一条大河,最后这条大河流进了大海.这条大河的入海口处有一个村庄--名叫B ...

  2. [LUOGU] P3354 [IOI2005]Riv 河流

    题目描述 几乎整个Byteland王国都被森林和河流所覆盖.小点的河汇聚到一起,形成了稍大点的河.就这样,所有的河水都汇聚并流进了一条大河,最后这条大河流进了大海.这条大河的入海口处有一个村庄--名叫 ...

  3. BZOJ.1812.[IOI2005]Riv 河流(树形背包)

    BZOJ 洛谷 这个数据范围..考虑暴力一些把各种信息都记下来.不妨直接令\(f[i][j][k][0/1]\)表示当前为点\(i\),离\(i\)最近的建了伐木场的\(i\)的祖先为\(j\),\( ...

  4. P3354 [IOI2005]Riv 河流

    树形dp,设f[i][j][k]表示第i个点的子树中选择j个点作为伐木场,而且k是建了伐木场的最浅的i的祖先的情况下,最小的收益. 这种题还要练一下,咕咕 然后转移可以n4方做. // luogu-j ...

  5. BZOJ1812: [Ioi2005]riv(树形dp)

    题意 题目链接 Sol 首先一个很显然的思路是直接用\(f[i][j] / g[i][j]\)表示\(i\)的子树中选了\(j\)个节点,该节点是否选的最小权值.但是直接这样然后按照树形背包的套路转移 ...

  6. 【[IOI2005]Riv 河流】

    趁魏佬去英语演讲了,赶快%%%%%%%%%%%%%%魏佬 基本上是照着魏佬的代码写的 这其实还是一个树上背包 我们用\(dp[i][j][k]\)表示在以\(i\)为根的子树里,我们修建\(k\)个伐 ...

  7. 洛谷P3354 [IOI2005]Riv 河流——“承诺”DP

    题目:https://www.luogu.org/problemnew/show/P3354 状态中要记录一个“承诺”,只需相同承诺之间相互转移即可: 然后就是树形DP的套路了. 代码如下: #inc ...

  8. [IOI2005]Riv 河流

    https://www.zybuluo.com/ysner/note/1300088 题面 有一棵\(n\)个点的树,现在在上面放\(k\)个标记,使得每个点的权值乘上自己到最近的标记祖先的距离的和最 ...

  9. [IOI2005]Riv河流

    题目链接:洛谷,BZOJ 前置知识:莫得 题解 直接考虑dp.首先想法是设状态 \(dp[u][i]\) 表示u的子树内建 \(i\) 个伐木场且子树内木头都运到某个伐木场的最小花费.发现这样的状态是 ...

随机推荐

  1. SQL Server解惑——为什么你的查询结果超出了查询时间范围

    废话少说,直接上SQL代码(有兴趣的测试验证一下),下面这个查询语句为什么将2008-11-27的记录查询出来了呢?这个是同事遇到的一个问题,个人设计了一个例子. USE AdventureWorks ...

  2. 通过 Telegraf + InfluxDB + Grafana 快速搭建监控体系的详细步骤

    第一部分 Telegraf 部署和配置 Telegraf 是实现 数据采集 的工具.Telegraf 具有内存占用小的特点,通过插件系统开发人员可轻松添加支持其他服务的扩展. 在平台监控系统中,可以使 ...

  3. docker容器虚拟化技术

    简单来说,在Windows系统下安装各种运行环境的坑简直不要太多了(● ̄(エ) ̄●),并不仅限于docker.Nginx.PHP.Python等等,我会尽详细写出实际过程中遇到的各种各样的奇葩问题 1 ...

  4. 微服务与K8S容器云平台架构

    微服务与K8S容器云平台架构 微服务与12要素 网络 日志收集 服务网关 服务注册 服务治理- java agent 监控 今天先到这儿,希望对技术领导力, 企业管理,系统架构设计与评估,团队管理, ...

  5. 14. java面向对象 - 基础

    一.面向对象主线 1. Java类及类的成员:属性.方法.构造器.代码块.内部类 2. 面向对象三大特征:封装.继承.多态.(抽象性) 3. 其他关键字:this.super.static.final ...

  6. 2.28秒创建一个k8s集群(非理论篇,理论自行 -- )

    准备3台centos 7+ (建议7以上,不然要会很麻烦,要升级内核等等,扯淡的东西) 安装docker 和k8s集群(均以最新版为例)基于官网 设置静态ip(可选) 查看本机的网关ip cd /Li ...

  7. 用dotnet core搭建web服务器(二)路由表与封装

    https://gitee.com/lightsever/netcore_study/tree/master/server02_path 先上代码,首先我们把httpserver封装一下,以后用起来方 ...

  8. 使用python解析ip地址

    前言 想要批量将ip地址转换为省份城市.国家或是经纬度?百度上的批量查找每次的容量太小满足不了要求?第三方库神器 - geoip2帮你解决所有烦恼. 准备工作 首先安装一下geoip2库, pip i ...

  9. 什么是单点登录,php是如何实现单点登录的

    单点登录SSO(Single Sign On)说得简单点就是在一个多系统共存的环境下,用户在一处登录后,就不用在其他系统中登录,也就是用户的一次登录能得到其他所有系统的信任.单点登录在大型网站里使用得 ...

  10. 母版页 treeview控件 SiteMapPath控件 treeview数据库绑定模式

     母版页就是网站中一样的部分母版页的后缀名是.Master可以把母版页当成一个页面  想让哪里是别的内容就可以  通过如下: <asp:ContentPlaceHolder ID="C ...