题意

给定一个长度为N的数列A,以及M条指令 (N≤5* 10^5, M<=10^5),每条指令可能是以下两种之一:

“C l r d”,表示把 A[l],A[l+1],…,A[r] 都加上 d。

“Q l r”,表示询问 A[l],A[l+1],…,A[r] 的最大公约数(GCD)。

由《九章算术》中的更相减损我们知道gcd(x,y)=gcd(x,y-x)同理可以推到多个整数。(可以用数学归纳法证明)

因此,构造一个长度为N的新数列B,其中B[i]=A[i]-A[i-1],B[1]为任意值,数列B称作数列A的差分序列。我们可以用线段树维护序列B的区间最大公约数。询问“Q l r”,就等于求出gcd(A[l],ask(1,l+1,r))。

在指令“C l r d”下只有B[l]加d,B[r+1]减d,所以直接线段树两次单点修改即可,对于原序列A,我们之间用树状数组“区间修改,单点查询”维护即可。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=500010;
struct node{
int l,r;
long long data;
} t[maxn*4];
long long a[maxn],b[maxn],c[maxn];
int n,m,l,r;
long long x;
long long gcd(long long a,long long b) {
return b ? gcd(b,a%b) : a;
}
void build(int p,int l,int r){
t[p].l=l;t[p].r=r;
if(l==r){t[p].data=b[l];return;}
int mid=(l+r)/2;
build(p*2,l,mid);
build(p*2+1,mid+1,r);
t[p].data=gcd(t[p*2].data,t[p*2+1].data);
}
void change(int p,int x,long long v){
if(t[p].l==t[p].r){t[p].data+=v;return;}
int mid=(t[p].l+t[p].r)/2;
if(x<=mid) change(p*2,x,v);
else change(p*2+1,x,v);
t[p].data=gcd(t[p*2].data,t[p*2+1].data);
}
long long ask(int p,int l,int r){
if(l<=t[p].l&&r>=t[p].r) return abs(t[p].data);
int mid=(t[p].l+t[p].r)/2;
long long val=0;
if(l<=mid) val=gcd(val,ask(p*2,l,r));
if(r>mid) val=gcd(val,ask(p*2+1,l,r));
return abs(val);
}
int lowbit(int x){
return x&-x;
}
long long sum(int x) {
long long tmp=0;
for(;x;x-=lowbit(x)) tmp+=c[x];
return tmp;
}
void add(int x,long long y) {
for(;x<=n;x+=lowbit(x)) c[x]+=y;
}
int main(){
cin >>n>>m;
for(int i=1;i<=n;++i){
scanf("%lld",&a[i]);
b[i]=a[i]-a[i-1];
}
build(1,1,n);
while(m--){
char str[2];
scanf("%s",str);
scanf("%d %d",&l,&r);
if(str[0]=='Q'){
long long tmp=a[l]+sum(l);
long long val=l<r ? ask(1,l+1,r) : 0;
printf("%lld\n",gcd(tmp,val));
}
else{
scanf("%lld",&x);
change(1,l,x);
if(r<n)change(1,r+1,-x);
add(l,x);
add(r+1,-x);
}
}
return 0;
}

CH 4302 Interval GCD 题解的更多相关文章

  1. CH 4302 Interval GCD

    辗转相减法的扩展 $gcd(x, y, z) = gcd(x, y - x, z - y)$ 当有n个数时也成立 所以构造$a_{i}$的差分数组$b_{i} = a_{i} - a_{i - 1}$ ...

  2. CH4302 Interval GCD

    题意 4302 Interval GCD 0x40「数据结构进阶」例题 描述 给定一个长度为N的数列A,以及M条指令 (N≤5*10^5, M<=10^5),每条指令可能是以下两种之一: &qu ...

  3. JSOI2009 等差数列 和 算术天才⑨与等差数列 和 CH4302 Interval GCD

    等差数列 为了检验学生的掌握情况,jyy布置了一道习题:给定一个长度为N(1≤N≤100,000)的数列,初始时第i个数为vi(vi是整数,−100,000≤vi≤100,000),学生们要按照jyy ...

  4. CH Round #53 -GCD Path

    描述 给定一张N个点的有向图,点i到点j有一条长度为 i/(gcd(i,j))的边.有Q个询问,每个询问包含两个数x和y,求x到y的最短距离. 输入格式 第一行包含两个用空格隔开的整数,N和Q. 接下 ...

  5. 洛谷 P2568 GCD 题解

    原题链接 庆祝一下:数论紫题达成成就! 第一道数论紫题.写个题解庆祝一下吧. 简要题意:求 \[\sum_{i=1}^n \sum_{j=1}^n [gcd(i,j)==p] \] 其中 \(p\) ...

  6. 【CH4302】Interval GCD

    题目大意:给定一个长度为 N 的序列,M 个操作,支持区间加,区间查询最大公约数. 题解: 先来看一个子问题,若是单点修改,区间最大公约数,则可以发现,每次修改最多改变 \(O(logn)\) 个答案 ...

  7. HDU5726:GCD——题解

    题目:hdu的5726 (我原博客的东西,正好整理过来,属于st表裸题) (可以看出我当时有多么的菜--) 这道题写了一遍,然而蒟蒻的我的时间爆炸了-- 于是看了一下学长的代码(顺便在此处%一下学长) ...

  8. CC DGCD:Dynamic GCD——题解

    https://vjudge.net/problem/CodeChef-DGCD https://www.codechef.com/problems/DGCD 题目大意: 给一颗带点权的树,两个操作: ...

  9. [洛谷2257]YY的GCD 题解

    整理题目转化为数学语言 题目要我们求: \[\sum_{i=1}^n\sum_{i=1}^m[gcd(i,j)=p]\] 其中 \[p\in\text{质数集合}\] 这样表示显然不是很好,所以我们需 ...

随机推荐

  1. JavaFX 集成 Sqlite 和 Hibernate 开发爬虫应用

    目录 [隐藏] 0.1 前言: 0.2 界面 0.3 Maven 环境 0.4 项目结构 0.5 整合 Hibernate 0.5.1 SQLiteDialect.java 数据库方言代码 0.5.2 ...

  2. kali,ubuntu, debain DNS 配置

    kali 是基于 debain 的一个 Linux 发行版 DNS 的配置 是在文件 /etc/resolv.conf  下. 但是,我们会发现 /etc/resolv.conf 每次重启都会失效, ...

  3. 从boosting谈起

    Boosting 将一些表现效果一般(可能仅仅优于随机猜测)的模型通过特定方法进行组合来获得一个表现效果较好的模型.抽象地说,模型的训练过程是对一任意可导目标函数的优化过程. Adaptive boo ...

  4. 调用百度翻译 API 来翻译网站信息

    之前说过jquery.i18n.js 来做网站的中英翻译,前提就得做一套中文内容,一套英文内容来解决,好处是中英翻译可以准确无误,本篇文章我们来看一下调用百度翻译的 API 来进行网站的翻译,但是翻译 ...

  5. c#Winform自定义控件-目录

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...

  6. [GO语言的并发之道] Goroutine调度原理&Channel详解

    并发(并行),一直以来都是一个编程语言里的核心主题之一,也是被开发者关注最多的话题:Go语言作为一个出道以来就自带 『高并发』光环的富二代编程语言,它的并发(并行)编程肯定是值得开发者去探究的,而Go ...

  7. 前端利器躬行记(1)——npm

    npm(Node Package Manager)是Node.js的包管理工具,相当于一个在线仓库.它提供了一个公共的平台,将分散在世界各地的包集中起来,能轻松的安装.分享和管理相关的包,不用再为搜索 ...

  8. python+爬虫+微信机器人 打造属于你的网购价格监督利器

    写在最前 程序是为人类服务的,最近正好身边小伙伴们在做球衣生意,当然是去nikenba专区购买了,可是有些热门球衣发布几分钟就被抢完,有些折扣球衣也是很快就被抢售一空,那么我们只能靠自己的眼睛一直盯着 ...

  9. WIN10家庭版桌面右键单击显示设置出现ms-settings:display或ms-settings:personalization-background解决办法[原创]

    最近,笔者的笔记本卸载oracle数据库,注册表里面删除了不少相关信息,没想到担心的事情还是来了!桌面右键单击显示设置出现ms-settings:display或ms-settings:persona ...

  10. Unity进阶之ET网络游戏开发框架 05-搭建自己的第一个Scene

    版权申明: 本文原创首发于以下网站: 博客园『优梦创客』的空间:https://www.cnblogs.com/raymondking123 优梦创客的官方博客:https://91make.top ...