CH 4302 Interval GCD 题解
题意
给定一个长度为N的数列A,以及M条指令 (N≤5* 10^5, M<=10^5),每条指令可能是以下两种之一:
“C l r d”,表示把 A[l],A[l+1],…,A[r] 都加上 d。
“Q l r”,表示询问 A[l],A[l+1],…,A[r] 的最大公约数(GCD)。
由《九章算术》中的更相减损我们知道gcd(x,y)=gcd(x,y-x)同理可以推到多个整数。(可以用数学归纳法证明)
因此,构造一个长度为N的新数列B,其中B[i]=A[i]-A[i-1],B[1]为任意值,数列B称作数列A的差分序列。我们可以用线段树维护序列B的区间最大公约数。询问“Q l r”,就等于求出gcd(A[l],ask(1,l+1,r))。
在指令“C l r d”下只有B[l]加d,B[r+1]减d,所以直接线段树两次单点修改即可,对于原序列A,我们之间用树状数组“区间修改,单点查询”维护即可。
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=500010;
struct node{
int l,r;
long long data;
} t[maxn*4];
long long a[maxn],b[maxn],c[maxn];
int n,m,l,r;
long long x;
long long gcd(long long a,long long b) {
return b ? gcd(b,a%b) : a;
}
void build(int p,int l,int r){
t[p].l=l;t[p].r=r;
if(l==r){t[p].data=b[l];return;}
int mid=(l+r)/2;
build(p*2,l,mid);
build(p*2+1,mid+1,r);
t[p].data=gcd(t[p*2].data,t[p*2+1].data);
}
void change(int p,int x,long long v){
if(t[p].l==t[p].r){t[p].data+=v;return;}
int mid=(t[p].l+t[p].r)/2;
if(x<=mid) change(p*2,x,v);
else change(p*2+1,x,v);
t[p].data=gcd(t[p*2].data,t[p*2+1].data);
}
long long ask(int p,int l,int r){
if(l<=t[p].l&&r>=t[p].r) return abs(t[p].data);
int mid=(t[p].l+t[p].r)/2;
long long val=0;
if(l<=mid) val=gcd(val,ask(p*2,l,r));
if(r>mid) val=gcd(val,ask(p*2+1,l,r));
return abs(val);
}
int lowbit(int x){
return x&-x;
}
long long sum(int x) {
long long tmp=0;
for(;x;x-=lowbit(x)) tmp+=c[x];
return tmp;
}
void add(int x,long long y) {
for(;x<=n;x+=lowbit(x)) c[x]+=y;
}
int main(){
cin >>n>>m;
for(int i=1;i<=n;++i){
scanf("%lld",&a[i]);
b[i]=a[i]-a[i-1];
}
build(1,1,n);
while(m--){
char str[2];
scanf("%s",str);
scanf("%d %d",&l,&r);
if(str[0]=='Q'){
long long tmp=a[l]+sum(l);
long long val=l<r ? ask(1,l+1,r) : 0;
printf("%lld\n",gcd(tmp,val));
}
else{
scanf("%lld",&x);
change(1,l,x);
if(r<n)change(1,r+1,-x);
add(l,x);
add(r+1,-x);
}
}
return 0;
}
CH 4302 Interval GCD 题解的更多相关文章
- CH 4302 Interval GCD
辗转相减法的扩展 $gcd(x, y, z) = gcd(x, y - x, z - y)$ 当有n个数时也成立 所以构造$a_{i}$的差分数组$b_{i} = a_{i} - a_{i - 1}$ ...
- CH4302 Interval GCD
题意 4302 Interval GCD 0x40「数据结构进阶」例题 描述 给定一个长度为N的数列A,以及M条指令 (N≤5*10^5, M<=10^5),每条指令可能是以下两种之一: &qu ...
- JSOI2009 等差数列 和 算术天才⑨与等差数列 和 CH4302 Interval GCD
等差数列 为了检验学生的掌握情况,jyy布置了一道习题:给定一个长度为N(1≤N≤100,000)的数列,初始时第i个数为vi(vi是整数,−100,000≤vi≤100,000),学生们要按照jyy ...
- CH Round #53 -GCD Path
描述 给定一张N个点的有向图,点i到点j有一条长度为 i/(gcd(i,j))的边.有Q个询问,每个询问包含两个数x和y,求x到y的最短距离. 输入格式 第一行包含两个用空格隔开的整数,N和Q. 接下 ...
- 洛谷 P2568 GCD 题解
原题链接 庆祝一下:数论紫题达成成就! 第一道数论紫题.写个题解庆祝一下吧. 简要题意:求 \[\sum_{i=1}^n \sum_{j=1}^n [gcd(i,j)==p] \] 其中 \(p\) ...
- 【CH4302】Interval GCD
题目大意:给定一个长度为 N 的序列,M 个操作,支持区间加,区间查询最大公约数. 题解: 先来看一个子问题,若是单点修改,区间最大公约数,则可以发现,每次修改最多改变 \(O(logn)\) 个答案 ...
- HDU5726:GCD——题解
题目:hdu的5726 (我原博客的东西,正好整理过来,属于st表裸题) (可以看出我当时有多么的菜--) 这道题写了一遍,然而蒟蒻的我的时间爆炸了-- 于是看了一下学长的代码(顺便在此处%一下学长) ...
- CC DGCD:Dynamic GCD——题解
https://vjudge.net/problem/CodeChef-DGCD https://www.codechef.com/problems/DGCD 题目大意: 给一颗带点权的树,两个操作: ...
- [洛谷2257]YY的GCD 题解
整理题目转化为数学语言 题目要我们求: \[\sum_{i=1}^n\sum_{i=1}^m[gcd(i,j)=p]\] 其中 \[p\in\text{质数集合}\] 这样表示显然不是很好,所以我们需 ...
随机推荐
- memcached.c 源码分析
上文分析了memcached的autoconf过程以及configure, make过程,可以看到,memcached可执行文件是由memcached-memcached.o以及其他文件连接后编译出来 ...
- 微服务之springboot 自定义配置(一)Application配置文件
配置的文件的格式 springboot可以识别两种格式的配置文件,分别是yml和properties 文件.我们可以将application.properties文件换成application.yml ...
- 用 PYQT5 和 QT Dseingner 写的串口助手
最近公司做项目需要写串口助手,于是从网上找教程着手写了一下,基本的功能可以实现了,但是想要一个表盘的功能一直没有找到教程,有些遗憾.大神们会的话给指导指导 谢谢啦 ! 下边有源码的连接,欢迎大家下载 ...
- CEPH 自动化测试用例介绍
1.QA 的内部逻辑关系. 首先用一个图表示一下QA的内部的逻辑关系. 2.QA的脚本介绍 3.QA脚本运行
- c#图片的平移与旋转
1新建文件夹,添加一个图片 2 添加控件 两个button控件 一个image控件 一个Canvas控件 3 代码实现 using System;using System.Collections.Ge ...
- 使用 OpenSSL 为 Nginx 创建自签名证书 并开启客户端身份验证
本文章默认读者了解Openssl,CA,网站证书相关知识,直接实战!配置完成后,浏览器会显示"安全的HTTPS"连接.不会像其他文章那样,是红色警告的证书提示. 准备环境 笔者使用 ...
- Vue系列:Websocket 使用配置
WebSocket 是什么? WebSocket 是一种网络通信协议.而且是在 HTML5 才开始提供的一种在单个 TCP 连接上进行全双工通讯的协议. 为什么需要 WebSocket ? 了解计算 ...
- 关于Linux安装的Python和miniconda
///注意 开头全部是小写建议自己手敲代码不要拷贝 1. Linux下软件的安装: a) Yum 安装(工具) rpm的增强版 b) Rpm安装 c) 源码编译安装:python3(LAMP) d) ...
- c# http Post Get 方法
/// <summary> /// get方式访问webapi /// </summary> /// <param name="url">< ...
- 车载多传感器融合定位方案:GPS +IMU+MM
导读 高德定位业务包括云上定位和端上定位两大模块.其中,云上定位主要解决Wifi指纹库.AGPS定位.轨迹挖掘和聚类等问题:端上定位解决手机端和车机端的实时定位问题.近年来,随着定位业务的发展,用户对 ...