It is well known that, in the period of The Three Empires, Liu Bei, the emperor of the Shu Empire, was defeated by Lu Xun, a general of the Wu Empire. The defeat was due to Liu Bei's wrong decision that he divided his large troops into a number of camps, each of which had a group of armies, and located them in a line. This was the so-called "Linked Camps".

Let's go back to that time. Lu Xun had sent many scouts to obtain the information about his enemy. From his scouts, he knew that Liu Bei had divided his troops into n camps, all of which located in a line, labeled by 1..n from left to right. The ith camp had a maximum capacity of Ci soldiers. Furthermore, by observing the activities Liu Bei's troops had been doing those days, Lu Xun could estimate the least total number of soldiers that were lived in from the ith to the jth camp. Finally, Lu Xun must estimate at least how many soldiers did Liu Bei had, so that he could decide how many troops he should send to burn Liu Bei's Linked Camps.

Input:

There are multiple test cases! On the first line of each test case, there are two integers n (0<n<=1,000) and m (0<=m<=10,000). On the second line, there are n integers C1��Cn. Then m lines follow, each line has three integers i, j, k (0<i<=j<=n, 0<=k<2^31), meaning that the total number of soldiers from the ith camp to the jth camp is at least k.

Output:

For each test case, output one integer in a single line: the least number of all soldiers in Liu Bei's army from Lu Xun's observation. However, Lu Xun's estimations given in the input data may be very unprecise. If his estimations cannot be true, output "Bad Estimations" in a single line instead.

Sample Input:

3 2
1000 2000 1000
1 2 1100
2 3 1300
3 1
100 200 300
2 3 600

Sample Output:

1300
Bad Estimations

题解:只是一道差分约束的线性约束问题。首先用dis[i]代表从0到i的人数,则0=<dis[i]-dis[i-1]<=a[i],又有 U,V,W得到

dis[V]-dis[U-1]>=W , dis[V]-dis[U-1]<=sum[V]-sum[U-1] ;然后写SPFA就可以啦。

参考代码为(反向最短路):

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxm = 2e5+;
const int maxn = ;
int n,m;
struct edge
{
int v;
int c;
edge(){}
edge(int v,int c):v(v),c(c){}
};
vector<edge>e[maxn];
int a[maxn],sum[maxn],dis[maxn],cnt[maxn];
void addedge(int u,int v,int c)
{
e[u].push_back(edge(v,c));
} void spfa()
{
bool vis[maxn];memset(vis,,sizeof vis);
memset(dis,INF,sizeof dis);
dis[n]=;vis[n]=;
queue<int>q; q.push(n);
while(!q.empty())
{
int pre=q.front();q.pop();
vis[pre]=;
for(int i=;i<e[pre].size();i++)
{
if(dis[e[pre][i].v]>dis[pre]+e[pre][i].c)
{
dis[e[pre][i].v]=dis[pre]+e[pre][i].c;
if(!vis[e[pre][i].v])
{
vis[e[pre][i].v]=;
q.push(e[pre][i].v);
if(++cnt[e[pre][i].v]>sqrt(n))
{
printf("Bad Estimations\n");
return ;
}
}
}
}
}
printf("%d\n",-dis[]);
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
memset(sum,,sizeof sum);
memset(cnt,,sizeof cnt);
memset(e,,sizeof e);
int u,v,c;
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
sum[i]=sum[i-]+a[i];
}
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&c);
addedge(v,u-,-c);
addedge(u-,v,sum[v]-sum[u-]);
}
for(int i=;i<=n;i++)
{
addedge(i,i-,);
addedge(i-,i,a[i]);
}
spfa();
}
return ;
}
 

ZOJ2770-Burn The Linked Camp(火烧连营Orz 差分约束-线性约束+最长路(OR反向最短路))的更多相关文章

  1. ZOJ2770 Burn the Linked Camp(差分约束系统)

    区间和一定要联系到前缀和. 这题,把前缀和看作点,从s0到sn: 对于每一个营地i的容量capi,有这么个关系si-si-1<=capi: 对于每一个区间的评估i,j,k,有sj-si-1> ...

  2. zoj2770 Burn the Linked Camp --- 差分约束

    有n个营地,每一个营地至多容纳Ci人.给出m个条件:第i到第j个营地之间至少有k人. 问n个营地总共至少有多少人. 此题显然差分约束.要求最小值.则建立x-y>=z方程组,建图求最长路. 用d[ ...

  3. zoj Burn the Linked Camp (查分约束)

    Burn the Linked Camp Time Limit: 2 Seconds      Memory Limit: 65536 KB It is well known that, in the ...

  4. ZOJ 2770 Burn the Linked Camp 差分约束

    链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do? problemCode=2770 Burn the Linked Camp Time Limi ...

  5. Burn the Linked Camp(bellman 差分约束系统)

    Burn the Linked Camp Time Limit: 2 Seconds      Memory Limit: 65536 KB It is well known that, in the ...

  6. zoj 2770 Burn the Linked Camp (差分约束系统)

    // 差分约束系统// 火烧连营 // n个点 m条边 每天边约束i到j这些军营的人数 n个兵营都有容量// Si表示前i个军营的总数 那么 1.Si-S(i-1)<=C[i] 这里 建边(i- ...

  7. ZOJ 2770 Burn the Linked Camp 差分约束 ZOJ排名第一~

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1770 题目大意: 陆逊为了火烧连营七百里,派出了间谍刺探敌情,得之刘备的军营以 ...

  8. ZOJ 2770 Burn the Linked Camp(spfa&&bellman)

    //差分约束 >=求最长路径 <=求最短路径 结果都一样//spfa#include<stdio.h> #include<string.h> #include< ...

  9. zoj 2770 Burn the Linked Camp

    今天刚刚学差分约束系统.利用最短路求解不等式.世界真的好奇妙!感觉不等式漏下几个会导致WA!! #include<cstdio> #include<cstring> #incl ...

随机推荐

  1. show语句大全

    基于本人对MySQL的使用,现将常用的MySQL show 语句列举如下: 1.show databases ; // 显示mysql中所有数据库的名称 2.show tables [from dat ...

  2. java多线程与线程并发三:线程同步通信

    本文章内容整理自:张孝祥_Java多线程与并发库高级应用视频教程. 有些时候,线程间需要传递消息,比如下面这道面试题: 子线程循环10次,然后主线程循环100次,然后又回到子线程循环50次,然后再回到 ...

  3. 如何在 PHP 和 Laravel 中使用 Traits

    事实上,PHP 作为一门编程语言存在的问题之一,就是你只能使用单继承.这意味着一个类只能从另一个类中继承.例如,可能希望从几个不同的类继承方法,以防止代码重复.在 PHP 5.4 中 一个新的语言特性 ...

  4. Zabbix安装部署实践

    操作系统: [root@mysql ~]# cat /etc/redhat-release CentOS Linux release 7.5.1804 (Core) Mysql :     版本5.7 ...

  5. 浅谈Node中的模块化

    关于这篇文章早在去年年初的时候我就想写一片关于模块化的文章,但是推到现在才来完成也有很多好处,巩固之前对Node的理解.毕竟在我目前的项目中还没有一款项目是用到了Node开发,所以导致我对Node的一 ...

  6. 力扣(LeetCode)三个数的最大乘积 个人题解

    给定一个整型数组,在数组中找出由三个数组成的最大乘积,并输出这个乘积. 示例 1: 输入: [1,2,3] 输出: 6 示例 2: 输入: [1,2,3,4] 输出: 24 注意: 给定的整型数组长度 ...

  7. python中的__call__方法

    在Python中,函数其实是一个对象: >>> f = abs >>> f.__name__ 'abs' >>> f(-) 由于 f 可以被调用, ...

  8. three.js使用卷积法实现物体描边效果

    法线延展法 网上使用法线延展法实现物体描边效果的文章比较多,这里不再描述. 但是这种方法有个缺点:当两个面的法线夹角差别较大时,两个面的描边无法完美连接.如下图所示: 卷积法 这里使用另一种方法卷积法 ...

  9. java中的transient关键字详解

    目录 1.何谓序列化? 2.为何要序列化? 3.序列化与transient的使用 4.java类中serialVersionUID作用 5.transient关键字小结 前言 说实话学了一段时间jav ...

  10. Redis 4.0鲜为人知的功能将加速您的应用程序

    来源:Redislabs 作者:Kyle Davis 翻译:Kevin (公众号:中间件小哥) Redis 4.0给Redis生态带来了一个惊人的功能:Modules(模块).Modules是Redi ...