Recently George is preparing for the Graduate Record Examinations (GRE for short). Obviously the most important thing is reciting the words.
Now George is working on a word list containing N words.

He has so poor a memory that it is too hard for him to remember all
of the words on the list. But he does find a way to help him to
remember. He finds that if a sequence of words has a property that for
all pairs of neighboring words, the previous one is a substring of the
next one, then the sequence of words is easy to remember.

So he decides to eliminate some words from the word list first to
make the list easier for him. Meantime, he doesn't want to miss the
important words. He gives each word an importance, which is represented
by an integer ranging from -1000 to 1000, then he wants to know which
words to eliminate to maximize the sum of the importance of remaining
words. Negative importance just means that George thought it useless and
is a waste of time to recite the word.

Note that although he can eliminate any number of words from the
word list, he can never change the order between words. In another word,
the order of words appeared on the word list is consistent with the
order in the input. In addition, a word may have different meanings, so
it can appear on the list more than once, and it may have different
importance in each occurrence.


InputThe first line contains an integer T(1 <= T <= 50), indicating the number of test cases.

Each test case contains several lines.

The first line contains an integer N(1 <= N <= 2 * 10
4), indicating the number of words.

Then N lines follows, each contains a string S
i and an integer W
i, representing the word and its importance. S
i contains only lowercase letters.

You can assume that the total length of all words will not exceeded 3 * 10
5.OutputFor each test case in the input, print one line: "Case #X:
Y", where X is the test case number (starting with 1) and Y is the
largest importance of the remaining sequence of words.Sample Input

1
5
a 1
ab 2
abb 3
baba 5
abbab 8

Sample Output

Case #1: 14

题解:

给定n个字符串,要求按顺序取一些字符串,满足后一个字符串是前一个字符串的子串,要求使得取出的权值和最大。

题目类似一般的DP问题,项最长上升子序列,只不过把上升的要求改成了是前一个的子串,权重也发生了改变 。

判断子串关系,我们用AC 自动机。

我们把AC自动机的fail指针拿出来建立一棵树,然后在求这棵树的dfs序,对于每个点,我所能得到的最大权值一定是该点到root的所有权值。然后我们对每个点的in[x],和out[x]之间的dfs序去更新。

每次取最大值即可

参考代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
typedef long long LL;
const int maxn=3e5+;
int cnt,root,n,kase,w[+],pos[+];
int INDEX,in[maxn],out[maxn];
char s[maxn];
int fail[maxn];
int S[maxn*],tag[maxn*],MAX,L,R;
int st[maxn],tot;
struct edge {
int v,nxt;
}v[maxn*];
inline void addedge(int x,int y)
{
v[tot]=(edge){y,st[x]};
st[x]=tot++;
}
struct node {
int nxt[],cnt;
}T[maxn];
inline int newnode()
{
cnt++; memset(T[cnt].nxt,,sizeof(T[cnt].nxt));
T[cnt].cnt=; fail[cnt]=;
return cnt;
}
inline void insert(char *s)
{
int now=root; int i=;
while(s[i])
{
if(!T[now].nxt[s[i]-'a'])T[now].nxt[s[i]-'a']=newnode();
now=T[now].nxt[s[i]-'a']; i++;
}
T[now].cnt++;
}
queue<int>Q;
inline void build()
{
Q.push(root);
while(!Q.empty())
{
int k=Q.front(); Q.pop();
if(k!=root)addedge(fail[k],k);
for(int i=;i<;++i)
{
if(!T[k].nxt[i]){T[k].nxt[i]=T[fail[k]].nxt[i];continue;}
if(k!=root)
fail[T[k].nxt[i]]=T[fail[k]].nxt[i];
Q.push(T[k].nxt[i]);
}
}
}
inline void DFS(int u,int fa)
{
in[u]=++INDEX;
for(int i=st[u];~i;i=v[i].nxt)
if(v[i].v!=fa) DFS(v[i].v,u);
out[u]=INDEX;
}
inline void update(int k)
{
S[k]=max(S[k<<],S[k<<|]);
}
inline void down(int k)
{
if(!tag[k])return ;
tag[k<<]=max(tag[k<<],tag[k]);
tag[k<<|]=max(tag[k<<|],tag[k]);
S[k<<]=max(S[k<<],tag[k]);
S[k<<|]=max(S[k<<|],tag[k]); tag[k]=;
}
inline int ask(int l,int r,int k)
{
if(L<=l&&r<=R)return S[k];
int mid=(l+r)>>; down(k);
int res=;
if(L<=mid)res=max(res,ask(l,mid,k<<));
if(R>mid)res=max(res,ask(mid+,r,k<<|)); return res;
}
inline void add(int l,int r,int k)
{
if(L<=l&&r<=R)
{
S[k]=max(S[k],MAX); tag[k]=max(tag[k],MAX);
return ;
}
int mid=(l+r)>>; down(k);
if(L<=mid)add(l,mid,k<<);
if(R>mid)add(mid+,r,k<<|);
update(k);
}
int main()
{
int t; scanf("%d",&t);
while(t--)
{
scanf("%d",&n); cnt=-;
root=newnode(); tot=;
memset(st,-,sizeof(st));
pos[]=;
for(int i=;i<=n;++i)
{
scanf("%s%d",s+pos[i-],w+i);
pos[i]=pos[i-]+strlen(s+pos[i-]);
insert(s+pos[i-]);
}
build();
INDEX=;
DFS(root,-);
int ans=;
memset(S,,sizeof(S));
memset(tag,,sizeof(tag));
for(int i=;i<=n;++i)
{
MAX=; int p=root;
for(int j=pos[i-];j<pos[i];++j)
{
p=T[p].nxt[s[j]-'a']; L=in[p];R=in[p];
int res=ask(,INDEX,);
MAX=max(res,MAX);
}
MAX=MAX+w[i];
ans=max(ans,MAX);
L=in[p];R=out[p];
add(,INDEX,);
}
printf("Case #%d: %d\n",++kase,ans);
}
return ;
}

HDU4117 GRE WORDS(AC自动机+线段树维护fail树的dfs序)的更多相关文章

  1. hdu 4117 -- GRE Words (AC自动机+线段树)

    题目链接 problem Recently George is preparing for the Graduate Record Examinations (GRE for short). Obvi ...

  2. HDU 5069 Harry And Biological Teacher(AC自动机+线段树)

    题意 给定 \(n\) 个字符串,\(m\) 个询问,每次询问 \(a\) 字符串的后缀和 \(b\) 字符串的前缀最多能匹配多长. \(1\leq n,m \leq 10^5\) 思路 多串匹配,考 ...

  3. 背单词(AC自动机+线段树+dp+dfs序)

    G. 背单词 内存限制:256 MiB 时间限制:1000 ms 标准输入输出 题目类型:传统 评测方式:文本比较   题目描述 给定一张包含N个单词的表,每个单词有个价值W.要求从中选出一个子序列使 ...

  4. hdu 4117 GRE Words AC自动机DP

    题目:给出n个串,问最多能够选出多少个串,使得前面串是后面串的子串(按照输入顺序) 分析: 其实这题是这题SPOJ 7758. Growing Strings AC自动机DP的进阶版本,主题思想差不多 ...

  5. 【AC自动机】【树状数组】【dfs序】洛谷 P2414 [NOI2011]阿狸的打字机 题解

        这一题是对AC自动机的充分理解和树dfs序的巧妙运用. 题目背景 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机. 题目描述 打字机上只有28个按键,分别印有26个小写英文字母和' ...

  6. 【bzoj4771】七彩树 树链的并+STL-set+DFS序+可持久化线段树

    题目描述 给定一棵n个点的有根树,编号依次为1到n,其中1号点是根节点.每个节点都被染上了某一种颜色,其中第i个节点的颜色为c[i].如果c[i]=c[j],那么我们认为点i和点j拥有相同的颜色.定义 ...

  7. hdu 4117 GRE Words (ac自动机 线段树 dp)

    参考:http://blog.csdn.net/no__stop/article/details/12287843 此题利用了ac自动机fail树的性质,fail指针建立为树,表示父节点是孩子节点的后 ...

  8. BZOJ2434:[NOI2011]阿狸的打字机(AC自动机,线段树)

    Description 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母. 经阿狸研究发现,这个打字机是这样工作的 ...

  9. CoderForces 163E e-Government(AC自动机+树状数组维护fail树的dfs序)

    E. e-Government time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

随机推荐

  1. Web微信开发工具无法输入中文?官方bug

    Ctrl+shift+w 重启工具就OK啦

  2. 如何查看当前linux服务器是否支持虚拟化

    [root@localhost ~]# grep -E '(svm|vmx)' /proc/cpuinfo 或者: [root@localhost ~]# cat /proc/cpuinfo 找到fl ...

  3. virtualBox里Ubuntu设置静态IP

    1.先将网络设置为桥接模式 2.打开虚拟机,进入界面,点击编辑 3.设置IP,ipconfig/all查看物理机IP,虚拟机要与本机在同一网段 然后断开重新连接就可以上网了

  4. pat 1027 Colors in Mars(20 分)

    1027 Colors in Mars(20 分) People in Mars represent the colors in their computers in a similar way as ...

  5. hdu 3549 Flow Problem (Dinic)

    Flow ProblemTime Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total ...

  6. C语言|博客作业07

    这个作业属于哪个课程 C语言程序设计II 这个作业的要求在哪里 https://edu.cnblogs.com/campus/zswxy/CST2019-1/homework/9935 我在这个课程的 ...

  7. RAID5创建流程(3块做RAID,两块备份)

    https://www.cnblogs.com/meng-yu37/p/11739680.html(raid10链接) RAID5和RAID10 配置差不多,这里只指出不同的地方, 2. 使用mdad ...

  8. shell配置文件

    个人配置主要集中在-/.profile文件中 打开新的交互式shell时,配置文件的执行顺序是/etc/profile  /etc/bashrc  ~/.profile   最后是~/.bashrc ...

  9. Win32窗口消息机制 x Android消息机制 x 异步执行

    如果你开发过Win32窗口程序,那么当你看到android代码到处都有的mHandler.sendEmptyMessage和 private final Handler mHandler = new ...

  10. objc反汇编分析,手工逆向libsystem_blocks.dylib

    上一篇<block函数块为何物?>介绍了在函数中定义的block函数块的反汇编实现,我在文中再三指出__block变量和block函数块自始还都是stack-based的,还不完全适合在离 ...