什么是Kafka?
通过Kafka的快速入门 https://www.cnblogs.com/tree1123/p/11150927.html
能了解到Kafka的基本部署,使用,但他和其他的消息中间件有什么不同呢?
Kafka的基本原理,术语,版本等等都是怎么样的?到底什么是Kafka呢?
一、Kafka简介
2011年,LinkIn开源, November 1, 2017 1.0版本发布 July 30, 2018 2.0版本发布
参考官网的图:

Kafka®用于构建实时数据管道和流式应用程序。它具有水平可扩展性、容错性、速度极快,并在数千家公司投入生产。
kafka官网最新的定义:Apache Kafka® is a distributed streaming platform
也就是分布式流式平台。
介绍:
三个特点:
- Publish and subscribe to streams of records, similar to a message queue or enterprise messaging system.
- Store streams of records in a fault-tolerant durable way.
- Process streams of records as they occur.
消息 持久化 流处理
两类应用:
Building real-time streaming data pipelines that reliably get data between systems or applications
Building real-time streaming applications that transform or react to the streams of data
实时流数据管道 实时流应用程序
几个概念
Kafka is run as a cluster on one or more servers that can span multiple datacenters.
The Kafka cluster stores streams of records in categories called topics.
Each record consists of a key, a value, and a timestamp
集群 topic record
四个核心api
- The Producer API allows an application to publish a stream of records to one or more Kafka topics.
- The Consumer API allows an application to subscribe to one or more topics and process the stream of records produced to them.
- The Streams API allows an application to act as a stream processor, consuming an input stream from one or more topics and producing an output stream to one or more output topics, effectively transforming the input streams to output streams.
- The Connector API allows building and running reusable producers or consumers that connect Kafka topics to existing applications or data systems. For example, a connector to a relational database might capture every change to a table.
Producer API Consumer API Streams API Connector API

客户端服务器通过tcp协议 支持多种语言
主题和日志
一个主题可以有零个,一个或多个消费者订阅写入它的数据
对于每个主题,Kafka群集都维护一个分区日志
每个分区都是一个有序的,不可变的记录序列,不断附加到结构化的提交日志中。
分区中的记录每个都被分配一个称为偏移的顺序ID号,它唯一地标识分区中的每个记录。

Kafka集群持久地保留所有已发布的记录 - 无论它们是否已被消耗 - 使用可配置的保留期。可以配置这个时间。
Kafka的性能在数据大小方面实际上是恒定的,因此长时间存储数据不是问题。

每个消费者保留的唯一元数据是该消费者在日志中的偏移或位置。
这种偏移由消费者控制:通常消费者在读取记录时会线性地提高其偏移量,但事实上,由于消费者控制位置,它可以按照自己喜欢的任何顺序消费记录。例如,消费者可以重置为较旧的偏移量以重新处理过去的数据,或者跳到最近的记录并从“现在”开始消费。
这使得消费者特别容易使用。
生产者:
生产者将数据发布到他们选择的主题。
为了负载均衡,可以选择多个分区。
消费者:
消费者组

传统的消息队列 发布订阅 都有弊端
队列可以扩展但不是多用户,发布订阅每条消费发给每个消费者,无法扩展。
但是kafka这个模式 解决了这些问题
kafka确保使用者是该分区的唯一读者并按顺序使用数据,由于有许多分区,这仍然可以
平衡许多消费者实例的负载。
作为存储系统
作为流处理系统
二、常见使用
消息
Kafka可以替代更传统的消息代理。消息代理的使用有多种原因(将处理与数据生成器分离,缓冲未处理的消息等)。与大多数消息传递系统相比,Kafka具有更好的吞吐量,内置分区,复制和容错功能,这使其成为大规模消息处理应用程序的理想解决方案。
根据我们的经验,消息传递的使用通常相对较低,但可能需要较低的端到端延迟,并且通常取决于Kafka提供的强大的耐用性保证。
在这个领域,Kafka可与传统的消息传递系统(如ActiveMQ或 RabbitMQ)相媲美。
网站活动跟踪
站点活动(页面查看,搜索或用户可能采取的其他操作)发布到中心主题,每个活动类型包含一个主题。实时处理,实时监控以及加载到Hadoop或离线数据仓库系统以进行离线处理和报告。
度量
Kafka通常用于运营监控数据。
日志聚合
许多人使用Kafka作为日志聚合解决方案的替代品。日志聚合通常从服务器收集物理日志文件,并将它们放在中央位置(可能是文件服务器或HDFS)进行处理。Kafka抽象出文件的细节,并将日志或事件数据更清晰地抽象为消息流。
流处理
从0.10.0.0开始,这是一个轻量级但功能强大的流处理库,名为Kafka Streams
三、官方文档-核心机制
http://kafka.apache.org/documentation/
简介 使用 快速入门 都已经学习过了
生态:这里有一些kafka的生态,各种Connector 可以直接连接数据库 es等等 还可以连接其他的流处理 还有各种管理工具
confluent公司 专门做kafka的生态
https://cwiki.apache.org/confluence/display/KAFKA/Ecosystem
kafka connect stream management
kafka考虑的几个问题:
吞吐量: 用到了page cache 并不是硬盘读写
消息持久化: 这个还是靠他独特的offset设计
负载均衡:分区副本机制
由于应用 零拷贝技术 客户端应用epoll 所以kafka部署在linux上性能更高。
消息:kafka的消息由 key value timestamp组成 消息头里定义了一些压缩 版本号的信息
crc 版本号 属性 时间戳 长度 key长度 key value长度 value
用的是二进制 不用java类
topic和partition:
这是kafka最核心,也是最重要的机制,这个机制让他区别于其他。
offset是指某一个分区的偏移量。
topic partition offset 这三个唯一确定一条消息。
生产者的offset其实就是最新的offset。
消费者的offset是他自己维护的,他可以选择分区最开始,最新,也可以记住他消费到哪了。
消费者数大于分区,就会有消费者空着。 消费者数小于分区,就会均衡消费。
因为kafka的设计是在一个partition上是不允许并发的,所以consumer数不要大于partition数 ,浪费。
如果consumer从多个partition读到数据,不保证数据间的顺序性,kafka只保证在一个partition上数据是有序的,但多个partition,根据你读的顺序会有不同。
增减consumer,broker,partition会导致rebalance,所以rebalance后consumer对应的partition会发生变化 。
消费者组是为了不同组的消费者可以同时消费一个分区的消息。
replica
这是为了防止服务器挂掉。
分为两类 leader replica 和 follow replica
只有 leader replica会响应客户端。
一旦leader replica所在的broker宕机,会选出新的leader。
kafka保证一个partition的多个replica一定不会分配到同一台broker上。
follow与leader实时同步。
ISR
in-sync replica 与leader replica保持同步的replica集合
正常时,所有的replica都在ISR中,但如果响应太慢,就会踢出ISR。之后追上来再加进来。
ISR中至少有一个replica是活着的。
ISR中所有replica都收到消息,这个消息才是已提交状态。
更多实时计算相关技术博文,欢迎关注实时流式计算

什么是Kafka?的更多相关文章
- Spark踩坑记——Spark Streaming+Kafka
[TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark strea ...
- 消息队列 Kafka 的基本知识及 .NET Core 客户端
前言 最新项目中要用到消息队列来做消息的传输,之所以选着 Kafka 是因为要配合其他 java 项目中,所以就对 Kafka 了解了一下,也算是做个笔记吧. 本篇不谈论 Kafka 和其他的一些消息 ...
- kafka学习笔记:知识点整理
一.为什么需要消息系统 1.解耦: 允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束. 2.冗余: 消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险. ...
- .net windows Kafka 安装与使用入门(入门笔记)
完整解决方案请参考: Setting Up and Running Apache Kafka on Windows OS 在环境搭建过程中遇到两个问题,在这里先列出来,以方便查询: 1. \Jav ...
- kafka配置与使用实例
kafka作为消息队列,在与netty.多线程配合使用时,可以达到高效的消息队列
- kafka源码分析之一server启动分析
0. 关键概念 关键概念 Concepts Function Topic 用于划分Message的逻辑概念,一个Topic可以分布在多个Broker上. Partition 是Kafka中横向扩展和一 ...
- Kafka副本管理—— 为何去掉replica.lag.max.messages参数
今天查看Kafka 0.10.0的官方文档,发现了这样一句话:Configuration parameter replica.lag.max.messages was removed. Partiti ...
- Kafka:主要参数详解(转)
原文地址:http://kafka.apache.org/documentation.html ############################# System ############### ...
- kafka
2016-11-13 20:48:43 简单说明什么是kafka? Apache kafka是消息中间件的一种,我发现很多人不知道消息中间件是什么,在开始学习之前,我这边就先简单的解释一下什么是消息 ...
- Spark Streaming+Kafka
Spark Streaming+Kafka 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端, ...
随机推荐
- windows软件卸载工具Geek Uninstaller免安装版
曾经一个问题一直困扰这我,就是每次在卸载软件的时候都卸载不干净,卸载完后会有遗留文件夹,每次都要手动删,还有注册表也不干净,让我很是难受,直到有一天发现了一个卸载神器Geek Uninstaller ...
- java高并发系列 - 第6天:线程的基本操作
新建线程 新建线程很简单.只需要使用new关键字创建一个线程对象,然后调用它的start()启动线程即可. Thread thread1 = new Thread1(); t1.start(); 那么 ...
- 9.22考试 crf的数数 题解
这道题当时第一反应是线段树,但没有继续想,因为当时打完第一题打算这道题和第二道题并列做,打完第二道题状压后时间还有两个小时多,先打完暴力再说,打完之后又接着去想,然后想了5分多钟吧,扑街. 然后就发现 ...
- C语言中的函数与数学上的函数很类似
函数,是C语言编程中一个很重要的概念,重要到个人认为可以与指针并驾齐驱.好多教材.老师.学习资源都会专门挑出一章来讲函数.我今天也来说说函数,只不过我是从数学课上的函数来引申到C语言中的函数. 先来说 ...
- 缓存实践Cache Aside Pattern
Cache Aside Pattern旁路缓存,是对缓存应用的一个总结,包括读数据方案和写数据方案. 读数据方案 先读cache,如果命中则返回 如果miss则读db 将db的数据存入缓存 写数据方案 ...
- 【Netty】Netty简介及服务器客户端简单开发流程
什么是Netty Netty是一个基于Java NIO的编写客服端服务器的框架,是一个异步事件框架. 官网https://netty.io/ 为什么选择Netty 由于JAVA NIO编写服务器的过程 ...
- React躬行记(9)——组件通信
根据组件之间的嵌套关系(即层级关系)可分为4种通信方式:父子.兄弟.跨级和无级. 一.父子通信 在React中,数据是自顶向下单向流动的,而父组件通过props向子组件传递需要的信息是组件之间最常见的 ...
- 个人永久性免费-Excel催化剂功能第63波-当前选择区域的上下左右平移功能及跳转窗口左上角
日常的Excel使用过程中,大部分的时间是在做选择单元格的操作,一般来说都是对指定单元格区域的内容进行一些数据处理.转换生成新数据的过程,那选择指定单元格的步骤,若能够尽最大程度地效率上得到加速,产出 ...
- jenkins +Jmeter 完成分布式性能测试
1.Jmeter 压测机器配置. 下载Jmeter 版本:https://jmeter.apache.org/download_jmeter.cgi 我下的是5.1.1 将下载后的版本进行解压. ...
- c语言进阶11-算法设计思想
一. 算法设计的要求: 为什么要学算法? /* 输出Hello word! */ #include "stdio.h" void main() { printf("He ...