###POJ 3252 题目链接 ###

题目大意:给你一段区间 [Start,Finish] ,在这段区间中有多少个数的二进制表示下,0 的个数 大于等于 1 的个数。


分析:

1、很显然是数位DP,枚举这区间中所有数的二进制位数。由于与 0 的个数有关,故需要用 lead 标记前导零情况。

2、然后就是要处理 1 的个数与 0 的个数,故 dp 的第二维状态即要表示出枚举到当前位 pos 时所拥有的 0 的个数 (或 1)。

但是你会发现,如果当前知道的是 前面几位中 0 的个数,为了满足题意,我还需要知道前面几位中 1 的个数,然后求差值,再到后面 pos 位中找相应的 dp 值。故为了简便,第二维设的应该是当前 1~pos位中,1的个数减去 0 的个数的差值。由于差值可能为负数,且 20亿 最高不会超过 32 位(二进制),故取 32 为中间值,然后根据枚举位上的 1 或 0 来加减。

故 dp[i][j] 表示,在 1~ i 位中,1 与 0 的个数差值为 j (与 32 的差值)。

本题的记忆化搜索: 当从最高位枚举到第 pos 位时,第 1 ~ pos 位上与当前状态对应于 dp[pos][差值] 时满足条件的个数,这个差值来源于 最高位到 pos 位 。比如从最高位的前三位都为 1 ,那么此时从最高位枚举了 3 位,且sum = 32 + 3 = 35 ,那么 dp[pos][sum] 即求在 sum 为 35 的情况下,第 1 ~ pos 位上,能使得最后 sum<=32 的状态个数。

代码如下:

#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
int dp[][],a[];
int N,M,res;
int dfs(int pos,int sum,bool lead,bool limit){
if(pos==) return sum<=;
if(!limit&&!lead&&dp[pos][sum]!=-) return dp[pos][sum];
int up=limit?a[pos]:;
int ans=;
for(int i=;i<=up;i++){
if(lead&&i==) ans+=dfs(pos-,sum,lead,limit&&i==a[pos]);
else ans+=dfs(pos-,sum+(i==?-:),false,limit&&i==a[pos]);
}
if(!limit&&!lead) dp[pos][sum]=ans;
return ans;
}
int solve(int x)
{
int pos=;
while(x){
a[++pos]=(x&);
x>>=;
}
res=pos;
return dfs(pos,,true,true);
}
int main()
{
//freopen("test.in","r",stdin);
//freopen("test.out","w",stdout);
memset(dp,-,sizeof(dp));
while(~scanf("%d%d",&N,&M)){
printf("%d\n",solve(M)-solve(N-) );
}
}

POJ 3252 (数位DP)的更多相关文章

  1. [poj 3252]数位dp前导0的处理

    通过这个题对于数位dp中前导0的处理有了新的认识. 题目链接:http://poj.org/problem?id=3252 //http://poj.org/problem?id=3252 #incl ...

  2. poj 3252 数位dp

    题意:一个二进制的数,如果0的个数大于1的个数,那么我们称这个数为Round Numbers,求给定区间(十进制表示)中Round Numbers的个数 题解:数位dp,不过这里枚举的时候lead标记 ...

  3. poj 3252 Round Numbers 数位dp

    题目链接 找一个范围内二进制中0的个数大于等于1的个数的数的数量.基础的数位dp #include<bits/stdc++.h> using namespace std; #define ...

  4. poj 3252 Round Numbers(数位dp 处理前导零)

    Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...

  5. POJ 3252 Round Number(数位DP)

    Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6983   Accepted: 2384 Des ...

  6. POJ 3252 区间内一个数的二进制中0的数量要不能少于1的数量(数位DP)

    题意:求区间内二进制中0的数量要不能少于1的数量 分析:很明显的是数位DP: 菜鸟me : 整体上是和数位dp模板差不多的 , 需要注意的是这里有前导零的影响 , 所以需要在dfs()里面增加zor ...

  7. POJ 3252 Round Numbers(数位dp&amp;记忆化搜索)

    题目链接:[kuangbin带你飞]专题十五 数位DP E - Round Numbers 题意 给定区间.求转化为二进制后当中0比1多或相等的数字的个数. 思路 将数字转化为二进制进行数位dp,由于 ...

  8. $POJ$3252 $Round\ Numbers$ 数位$dp$

    正解:数位$dp$ 解题报告: 传送门$w$ 沉迷写博客,,,不想做题,,,$QAQ$口胡一时爽一直口胡一直爽$QAQ$ 先港下题目大意嗷$QwQ$大概就说,给定区间$[l,r]$,求区间内满足二进制 ...

  9. POJ 3689 Apocalypse Someday [数位DP]

    Apocalypse Someday Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 1807   Accepted: 87 ...

随机推荐

  1. Ansible 日常使用技巧 - 运维总结

    Ansible默认只会创建5个进程并发执行任务,所以一次任务只能同时控制5台机器执行.如果有大量的机器需要控制,例如20台,Ansible执行一个任务时会先在其中5台上执行,执行成功后再执行下一批5台 ...

  2. Java正则表达式验证IP,邮箱,电话

     引言     java中我们会常用一些判断如IP.电子邮箱.电话号码的是不是合法,那么我们怎么来判断呢,答案就是利用正则表达式来判断了,废话不多说,下面就是上代码. 1:判断是否是正确的IP  1 ...

  3. 史上最全的Java命名规范[转]

    每个公司都有不同的标准,目的是为了保持统一,减少沟通成本,提升团队研发效能.所以本文中是笔者结合阿里巴巴开发规范,以及工作中的见闻针对Java领域相关命名进行整理和总结,仅供参考. 一.Java中的命 ...

  4. oracle11g安装教程

  5. LinqMethod 实现 LeftJoin

    LinqMethod 实现 LeftJoin Intro 有时候我们想实现 leftJoin 但是 Linq 提供的 Join 相当于是 INNER JOIN,于是就打算实现一个 LeftJoin 的 ...

  6. 前端之jquery1

    jquery介绍 jQuery是目前使用最广泛的javascript函数库.据统计,全世界排名前100万的网站,有46%使用jQuery,远远超过其他库.微软公司甚至把jQuery作为他们的官方库. ...

  7. org.springframework.util.Base64Utils线程安全问题

    Spring提供的org.springframework.util.Base64Utils类,先会检测JDK里是否自带java.util.Base64,如果不带,则使用的是apache提供的org.a ...

  8. Z从壹开始前后端分离【 .NET Core2.2/3.0 +Vue2.0 】框架之五 || Swagger的使用 3.3 JWT权限验证【必看】

    本文梯子 本文3.0版本文章 前言 1.如何给接口实现权限验证? 零.生成 Token 令牌 一.JWT ——自定义中间件 0.Swagger中开启JWT服务 1:API接口授权策略 2.自定义认证之 ...

  9. python基础(17):正则表达式

    1. 正则表达式 1.1 正则表达式是什么 正则表达式本身也和python没有什么关系,就是匹配字符串内容的一种规则. 官方定义:正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符 ...

  10. Java生鲜电商平台-订单架构实战

    Java生鲜电商平台-订单架构实战 生鲜电商中订单中心是一个电商后台系统的枢纽,在这订单这一环节上需要读取多个模块的数据和信息进行加工处理,并流向下一环节:因此订单模块对一电商系统来说,重要性不言而喻 ...