显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况.

判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑pia≤ n时是满足题意的. 最简单我们令循环长度分别为piai,不足n的话,我们令其他循环长度为1, 补到=n为止. 这样它们的lcm显然是=m的.

然后就是一个背包了...dp(i, j) = dp(i - 1, j) + ∑1≤t≤adp( i - 1, j - p) 表示前i个质数, 和为j有多少中方案

#include<bits/stdc++.h>

using namespace std;

typedef long long ll;

const int maxn = 1009;

ll dp[2][maxn];
int prime[maxn], N = 0, n;
bool check[maxn]; void init() {
memset(check, 0, sizeof check);
for(int i = 2; i <= n; i++) {
if(!check[i])
prime[N++] = i;
for(int j = 0; j < N && i * prime[j] <= n; j++) {
check[i * prime[j]] = true;
if(i % prime[j] == 0) break;
}
}
} int main() { cin >> n;
init(); int c = 0, p = 1;
memset(dp[c], 0, sizeof dp[c]); dp[c][0] = 1;
for(int i = 0; i < N; i++) {
swap(c, p);
memcpy(dp[c], dp[p], sizeof dp[c]);
for(int t = prime[i]; t <= n; t *= prime[i])
for(int j = t; j <= n; j++)
dp[c][j] += dp[p][j - t];
}
ll ans = 0;
for(int i = 0; i <= n; i++) ans += dp[c][i];
cout << ans << endl; return 0;
}

  

1025: [SCOI2009]游戏

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 1558  Solved: 977
[Submit][Status][Discuss]

Description

windy学会了一种游戏。对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应。最开始windy把数字按顺序1,2,3,……,N写一排在纸上。然后再在这一排下面写上它们对应的数字。然后又在新的一排下面写上它们对应的数字。如此反复,直到序列再次变为1,2,3,……,N。 如: 1 2 3 4 5 6 对应的关系为 1->2 2->3 3->1 4->5 5->4 6->6 windy的操作如下 1 2 3 4 5 6 2 3 1 5 4 6 3 1 2 4 5 6 1 2 3 5 4 6 2 3 1 4 5 6 3 1 2 5 4 6 1 2 3 4 5 6 这时,我们就有若干排1到N的排列,上例中有7排。现在windy想知道,对于所有可能的对应关系,有多少种可能的排数。

Input

包含一个整数,N。

Output

包含一个整数,可能的排数。

Sample Input

【输入样例一】
3
【输入样例二】
10

Sample Output

【输出样例一】
3
【输出样例二】
16

HINT

【数据规模和约定】

100%的数据,满足 1 <= N <= 1000 。

Source

BZOJ 1025: [SCOI2009]游戏( 背包dp )的更多相关文章

  1. [BZOJ 1025] [SCOI2009] 游戏 【DP】

    题目链接:BZOJ - 1025 题目分析 显然的是,题目所要求的是所有置换的每个循环节长度最小公倍数的可能的种类数. 一个置换,可以看成是一个有向图,每个点的出度和入度都是1,这样整个图就是由若干个 ...

  2. BZOJ 1025: [SCOI2009]游戏 [置换群 DP]

    传送门 题意:求$n$个数组成的排列变为升序有多少种不同的步数 步数就是循环长度的$lcm$..... 那么就是求$n$划分成一些数几种不同的$lcm$咯 然后我太弱了这种$DP$都想不出来.... ...

  3. [bzoj 1025][SCOI2009]游戏(DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 分析:首先这个问题等价于A1+A2+……Ak=n,求lcm(A1,A2,……,Ak)的种 ...

  4. BZOJ 1025 [SCOI2009]游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1533  Solved: 964[Submit][Status][ ...

  5. bzoj 1025 [SCOI2009]游戏(置换群,DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1025 [题意] 给定n,问1..n在不同的置换下变回原序列需要的不同排数有多少种. [ ...

  6. BZOJ 1025 [SCOI2009]游戏 (DP+分解质因子)

    题意: 若$a_1+a_2+\cdots+a_h=n$(任意h<=n),求$lcm(a_i)$的种类数 思路: 设$lcm(a_i)=x$, 由唯一分解定理,$x=p_1^{m_1}+p_2^{ ...

  7. bzoj 1025: [SCOI2009]游戏【数学+dp】

    很容易发现行数就是lcm环长,也就是要求和为n的若干数lcm的个数 有结论若p1^a1+p2^a2+...+pm^am<=n,则ans=p1^a1p2^a2..*pm^am是n的一个可行答案.( ...

  8. BZOJ 1025 SCOI2009 游戏 动态规划

    标题效果:特定n.行定义一个替代品1~n这种更换周期发生后,T次要(T>0)返回到原来的顺序 找到行的所有可能的数 循环置换分解成若干个,然后行位移数是这些周期的长度的最小公倍数 因此,对于一些 ...

  9. UESTC 2015dp专题 G 邱老师玩游戏 背包dp

    邱老师玩游戏 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/contest/show/65 Descr ...

随机推荐

  1. iOS9 白名单问题 -canOpenURL: failed for URL: "xx" - error:"This app is not allowed to query for scheme xx"

    [iOS开发]-canOpenURL: failed for URL: "xx" - error:"This app is not allowed to query fo ...

  2. CCPC A(模拟)

    Secrete Master Plan Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Othe ...

  3. Failed to upgrade Oracle Cluster Registry configuration(root.sh)

        近期在给客户基于Suse 11 sp3安装Oracle 10g RAC,在安装完clusterware运行/u01/app/crs/root.sh时收到错误提示.Failed to upgra ...

  4. Ext.MessageBox.Show使用Progress

    在此之前,先添加引用:以下引用方式仅供参考:由于我的extjs文件夹放在script文件夹下 <link href="~/Scripts/extjs/resources/ext-the ...

  5. STL之queue(单向队列)

    单向队列中的数据是先进先出(First In First Out,FIFO).单向队列一共6个常用函数(front().back().push().pop().empty().size()) #inc ...

  6. python成长之路16

    阅读(72) 一:jQuery是一个兼容多浏览器的javascript类库,核心理念是write less,do more(写得更少,做得更多),对javascript进行了封装,是的更加便捷的开发, ...

  7. java-StringTokenizer类

    StringTokenizer类别可以通过某个字符或者多个字符作为分界符,来将字符串划分为多个标记(token). package com.example.helloworld; import jav ...

  8. vagrant 入门4

    7. 打包 Packaging , 8080 end 2. 打包Project $ vagrant package --vagrantfile Vagrantfile.pkg 8. 打包完成后,在工程 ...

  9. 配置 .vimrc 解决 Vim / gVim 在中文 Windows 下的字符编码问题

    转载自:-杨博的日志 - 网易博客 Vim / gVim 在中文 Windows 下的字符编码有两个问题: 默认没有编码检测功能 如果一个文件本身采用的字符集比 GBK 大(如 UTF-8.UTF-1 ...

  10. (Problem 34)Digit factorials

    145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145. Find the sum of all numbers which are ...