标题效果:特定n。行定义一个替代品1~n这种更换周期发生后,T次要(T>0)返回到原来的顺序 找到行的所有可能的数

循环置换分解成若干个,然后行位移数是这些周期的长度的最小公倍数

因此,对于一些,是将这个数分解质因数。令x=p1^a1*p2^a2*...*pk^ak。若p1^a1+p2^a2+...+pk^ak<=n,则x就是可能的排数

分组背包就可以 令f[i][j]表示用前i个质数,和为j能得出的数的数量 每组的物品是pi^1~pi^ai

时间复杂度O(n/lgn*logn*n)=O(n^2)

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define M 1010
using namespace std;
typedef long long ll;
int n,prime[M],tot;
bool not_prime[M];
ll f[M][M],ans;//f[i][j]表示用前i个质数。和为j能得出的数的数量
void Linear_Shaker()
{
int i,j;
for(i=2;i<=n;i++)
{
if(!not_prime[i])
prime[++tot]=i;
for(j=1;j<=tot&&prime[j]*i<=n;j++)
{
not_prime[prime[j]*i]=1;
if(i%prime[j]==0)
break;
}
}
}
int Quick_Power(int x,int y)
{
int re=1;
while(y)
{
if(y&1)re*=x;
x*=x;
y>>=1;
}
return re;
}
int main()
{
int i,j,k,temp;
cin>>n;
Linear_Shaker();
f[0][0]=1;
for(i=1;i<=tot;i++)
{
for(j=0;j<=n;j++)
f[i][j]+=f[i-1][j];
for(j=prime[i];j<=n;j*=prime[i])
for(k=j;k<=n;k++)
f[i][k]+=f[i-1][k-j];
}
for(i=0;i<=n;i++)
ans+=f[tot][i];
cout<<ans<<endl;
return 0;
}

版权声明:本文博客原创文章。博客,未经同意,不得转载。

BZOJ 1025 SCOI2009 游戏 动态规划的更多相关文章

  1. BZOJ 1025 [SCOI2009]游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1533  Solved: 964[Submit][Status][ ...

  2. BZOJ 1025: [SCOI2009]游戏( 背包dp )

    显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...

  3. [BZOJ 1025] [SCOI2009] 游戏 【DP】

    题目链接:BZOJ - 1025 题目分析 显然的是,题目所要求的是所有置换的每个循环节长度最小公倍数的可能的种类数. 一个置换,可以看成是一个有向图,每个点的出度和入度都是1,这样整个图就是由若干个 ...

  4. bzoj 1025 [SCOI2009]游戏(置换群,DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1025 [题意] 给定n,问1..n在不同的置换下变回原序列需要的不同排数有多少种. [ ...

  5. [bzoj 1025][SCOI2009]游戏(DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 分析:首先这个问题等价于A1+A2+……Ak=n,求lcm(A1,A2,……,Ak)的种 ...

  6. BZOJ 1025: [SCOI2009]游戏 [置换群 DP]

    传送门 题意:求$n$个数组成的排列变为升序有多少种不同的步数 步数就是循环长度的$lcm$..... 那么就是求$n$划分成一些数几种不同的$lcm$咯 然后我太弱了这种$DP$都想不出来.... ...

  7. bzoj 1025: [SCOI2009]游戏【数学+dp】

    很容易发现行数就是lcm环长,也就是要求和为n的若干数lcm的个数 有结论若p1^a1+p2^a2+...+pm^am<=n,则ans=p1^a1p2^a2..*pm^am是n的一个可行答案.( ...

  8. BZOJ 1025 [SCOI2009]游戏 (DP+分解质因子)

    题意: 若$a_1+a_2+\cdots+a_h=n$(任意h<=n),求$lcm(a_i)$的种类数 思路: 设$lcm(a_i)=x$, 由唯一分解定理,$x=p_1^{m_1}+p_2^{ ...

  9. 【BZOJ】1025: [SCOI2009]游戏(置换群+dp+特殊的技巧+lcm)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1025 首先根据置换群可得 $$排数=lcm\{A_i, A_i表示循环节长度\}, \sum_{i= ...

随机推荐

  1. [暴力搜索] POJ 3087 Shuffle&#39;m Up

    Shuffle'm Up Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10003   Accepted: 4631 Des ...

  2. CentOS 6.3下配置iSCSI网络存储

    一.简介 iSCSI(internet SCSI)技术由IBM公司研究开发,是一个供硬件设备使用的.可以在IP协议的上层运行的SCSI指令集,这种指令集合可以实现在IP网络上运行SCSI协议,使其能够 ...

  3. C++:对象的赋值和复制

    3.6.1 对象赋值语句 如同基本类型赋值语句一样,同类型的对象之间也可以进行赋值,即一个对象的值可以赋给另一个对象.这里所指的对象的赋值是指对其中的数据成员赋值,而不对成员函数赋值.例如:A和B是同 ...

  4. SSH本地端口转发

    也是在公司常用的命令,还没有将EXPECT和SPAWN结合好,先用着: 带证书验证远程登陆的. (从公司内网服务器直接跳到外网服务器的内网端口) ssh -C -f -N -g -i private_ ...

  5. 解决OpenWrt多拨刚开机拨号只拨上一次问题

    红色标注为需要权限755/etc/ppp/ip-up.d/ip-up: 一旦 PPP 连结建立后, pppd 会找寻 /etc/ppp/ip-up 指令稿 如果这个指令稿存在并且可以执行的话,那么 P ...

  6. FormView分页显示数据的例子

    %@ Page Language="C#" AutoEventWireup="true" CodeBehind="FormView控件.aspx.cs ...

  7. vxWorks应用程序加载的另一种办法

    现在我们的工作中,应用程序一般都是和BSP联编,然后将vxworks_rom.bin烧到班子里.在BSP启动后,调用应用程序的函数的. 但是这样有个问题,就是应用程序和BSP结合的太紧密了.BSP开发 ...

  8. jmeter之正则表达式

    一.Jmeter关联的方式: Jmeter中关联可以在需要获取数据的请求上 右键-->后置处理器 选择需要的关联方式,如下图有很多种方法可以提取动态变化数据: 二.正则表达式提取器: 1.比如需 ...

  9. 1002. Find Common Characters查找常用字符

    参考:https://leetcode.com/problems/find-common-characters/discuss/247573/C%2B%2B-O(n)-or-O(1)-two-vect ...

  10. unity中自制模拟第一人称视角

    public float sensitivityX = 5f; public float sensitivityY = 5f; public float sensitivetyKeyBoard = 0 ...