Dance Dance Revolution

Time limit: 3.000 seconds

Mr. White, a fat man, now is crazy about a game named ``Dance, Dance, Revolution". But his dance skill is
so poor that he could not dance a dance, even if he dances arduously every time. Does ``DDR" just mean him
a perfect method to squander his pounds? No way. He still expects that he will be regarded as ``Terpsichorean
White" one day. So he is considering writing a program to plan the movement sequence of his feet, so that he
may save his strength on dancing. Now he looks forward to dancing easily instead of sweatily.
``DDR" is a dancing game that requires the dancer to use his feet to tread on the points according to the
direction sequence in the game. There are one central point and four side points in the game. Those side points
are classified as top, left, bottom and right. For the sake of explanation, we mark them integers. That is, the
central point is 0, the top is 1, the left is 2, the bottom is 3, and the right is 4, as the figure below shows:

At the beginning the dancer's two feet stay on the central point. According to the direction sequence, the
dancer has to move one of his feet to the special points. For example, if the sequence requires him to move to
the top point at first, he may move either of his feet from point 0 to point 1 (Note: Not both of his feet). Also,
if the sequence then requires him to move to the bottom point, he may move either of his feet to point 3,
regardless whether to use the foot that stays on point 0 or the one that stays on point 1.
There is a strange rule in the game: moving both of his feet to the same point is not allowed. For instance, if
the sequence requires the dancer to the bottom point and one of his feet already sta ys on point 3, he should
stay the very foot on the same point and tread again, instead of moving the other one to point 3.
After dancing for a long time, Mr. White can calculate how much strength will be consumed when he moves
from one point to another. Moving one of his feet from the central point to any side points will consume 2
units of his strength. Moving from one side point to another adjacent side point will consume 3 units, such as
from the top point to the left point. Moving from one side point to the opposite side point will consume 4
units, such as from the top point to the bottom point. Yet, if he stays on the same point and tread again, he will
use 1 unit.
Assume that the sequence requires Mr. White to move to point 1 2 2 4. His feet may stays on
(point 0, point 0) (0, 1) (2, 1) (2, 1) (2, 4). In this couple of integers, the former number
represents the point of his left foot, and the latter represents the point of his right foot. In this way, he has to
consume 8 units of his strength. If he tries another pas, he will have to consume much more strength. The 8
units of strength is the least cost.

Input
The input file will consist of a series of direction sequences. Each direction sequence contains a sequence of
numbers. Ea ch number should either be 1, 2, 3, or 4, and each represents one of the four directions. A value
of 0 in the direction sequence indicates the end of direction sequence. And this value should be excluded from
the direction sequence. The input file ends if the sequence contains a single 0.
Output
For each direction sequence, print the least units of strength will be consumed. The result should be a single
integer on a line by itself. Any more white spaces or blank lines are not allowable.
Sample Input
1 2 2 4 0
1 2 3 4 1 2 3 3 4 2 0
0
Sample Output
8
22
Shanghai 2000-2001

题解:

线性动态规划。维护一个三维数组f[i][x][y]表示在第i步左脚在x,右脚在y消耗最小的体力。

注意初始化f=MAX_NUMBER。f[1][a[1]][0]=2;f[1][0][a[1]]=2;

动态转移方程:

f[i][a[i]][j]=min(f[i][a[i]][j],f[i-1][k][j]+effort(k,a[i]));

f[i][j][a[i]]=min(f[i][j][a[i]],f[i-1][j][k]+effort(k,a[i]));

代码:

 #include<stdio.h>
#include<string.h>
#include<stdbool.h>
int i,j,n,
a[],f[][][]; int
pre()
{
memset(a,,sizeof(a));
memset(f,,sizeof(f));
return ;
} int
init()
{
while(true)
{
n++;
scanf("%d",&a[n]);
if(a[n]==)
{
n--;
break;
}
} f[][a[]][]=;
f[][][a[]]=;
return ;
} int
max(int a,int b)
{
if(a>b) return(a);
else return(b);
} int
min(int a,int b)
{
if(a<b) return(a);
else return(b);
}
int
effort(int a,int b)
{
int p;
if((min(a,b)==)&&(max(a,b)!=)) return();
p=max(a,b)-min(a,b);
if(p== || p==) return();
if(p==) return();
if(p==) return();
} int
dp()
{
int i,j,k,mini;
for(i=;i<=n;i++)
for(j=;j<=;j++)
for(k=;k<=;k++)
{
f[i][a[i]][j]=min(f[i][a[i]][j],f[i-][k][j]+effort(k,a[i]));
f[i][j][a[i]]=min(f[i][j][a[i]],f[i-][j][k]+effort(k,a[i]));
} mini=;
for(i=;i<=;i++)
mini=min(mini,min(f[n][a[n]][i],f[n][i][a[n]])); printf("%d\n",mini);
return ;
} int
main()
{
while(true)
{
pre();
n=;
scanf("%d",&a[n]);
if(a[n]==) break;
init();
dp();
}
return ;
}

[LA] 2031 Dance Dance Revolution的更多相关文章

  1. UVA 1291 十四 Dance Dance Revolution

    Dance Dance Revolution Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Su ...

  2. 递推DP UVA 1291 Dance Dance Revolution

    题目传送门 题意:给一串跳舞的动作,至少一只脚落到指定的位置,不同的走法有不同的体力消耗,问最小体力消费多少分析:dp[i][j][k] 表示前i个动作,当前状态(j, k)的最小消费,状态转移方程: ...

  3. Dance Dance Revolution

    今天我们来讲 Dance Dance Revolution这题 本题原网址 注意本题为多组输入输出,直到输入单个零而止(题面有点小问题) 很明显,此题为一道动态规划题(请不要妄想用贪心算法过这题,尽管 ...

  4. LA 2031

    Mr. White, a fat man, now is crazy about a game named ``Dance, Dance, Revolution". But his danc ...

  5. UVALive - 2031 Dance Dance Revolution 三维dp

    题目大意:有一个胖子在玩跳舞机.刚開始的位置在(0,0).跳舞机有四个方向键,上左下右分别相应1,2,3,4.如今有下面规则 1.假设从0位置移动到随意四个位置,消耗能量2 2.假设从非0位置跳到相邻 ...

  6. 2000 Asia shanghai Dance Dance Revolution

    思路:dp[i][x][y]表示第i个序列中,右脚在x位置,左脚在y位置时,其最小花费. 那么dp[i][x][y]=min(dp[i-1][a[i]][y]+cost[a[i]][x],dp[i-1 ...

  7. UVA 1291 Dance Dance Revolution(DP)

    意甲冠军:跳舞机有一个上5积分,分别central, top, bottom, left, right分,区区足站立还是需要1点物理,从一个单纯的脚central点上须要2点体力,从一个点上移动到相邻 ...

  8. TCP/UDP端口列表

    http://zh.wikipedia.org/wiki/TCP/UDP%E7%AB%AF%E5%8F%A3%E5%88%97%E8%A1%A8 TCP/UDP端口列表     本条目可通过翻译外语维 ...

  9. TCP/UDP 常用端口列表

    计算机之间依照互联网传输层TCP/IP协议不同的协议通信,都有不同的对应端口.所以,利用短信(datagram)的UDP,所采用的端口号码不一定和采用TCP的端口号码一样.以下为两种通信协议的端口列表 ...

随机推荐

  1. JTA

    http://blog.csdn.net/hengyunabc/article/details/19433947

  2. 2015第24周二Spring事务2

    今天继续深入学习SPring事务,发现网上很多文章都是很相似的转载没多少价值,就觉得更有必要把这个主题深入下去,先是摘录那些对自己有用的观点,后期再结合源码进行全面的整理. Spring提供了许多内置 ...

  3. C/C++捕获段错误,打印出错的具体位置(精确到哪一行)

    修订:2013-02-16 其实还可以使用 glibc 的 backtrace_symbols 函数,把栈帧各返回地址里面的数字地址翻译成符号描述的 修订:2011-06-11 背景知识: · 在li ...

  4. maven compile时出现“非法字符: \65279”的解决

    我碰到的这个问题是因为Java文件编码为UTF-8 BOM格式导致:解决这个可以使用UltraEdit. 用UltraEdit打开出问题的Java文件,将文件另存为,在保存对话框的编码中选择UTF-8 ...

  5. poj3708:函数式化简+高精度进制转换+同余方程组

    题目大意 给定一个函数 找出满足条件   等于 k 的最小的x m,k,d已知 其中 m,k 很大需要使用高精度存储 思路: 对 函数f(m)进行化简 ,令t=ceil( log(d,m) ) 可以得 ...

  6. Android apk获取系统权限

    Android在apk内部,即通过java代码来进行修改系统文件或者修改系统设置等等,这样需要获取系统权限. 通过直接配置apk运行在System进程内 1. 在应用程序的AndroidManifes ...

  7. c语言局部变量 静态局部变量 全局变量与静态全局变量

    基本概念: 作用域:起作用的区域,也就是可以工作的范围. 代码块:所谓代码块,就是用{}括起来的一段代码. 数据段:数据段存的是数,像全局变量就是存在数据段的 代码段:存的是程序代码,一般是只读的. ...

  8. jdbc调用mysql存储过程实现代码带有输入和输出

    转载自 http://www.jb51.net/article/34747.htm 1. 创建存储过程 建立一个MySQL的存储过程 add_pro 复制代码代码如下: delimiter // dr ...

  9. (转)iOS7界面设计规范(3) - UI基础 - 启动与退出

    周二晚间来第三发,搞得好像今天是周六的赶脚.发掉之后再奖励自己一点冰啤酒吧,然后扑床去.天气热起来了,各位注意防暑降温呗.走起. 重要:这是针对于正在开发中的API或技术的预备文档(预发布版本).虽然 ...

  10. Hacker(18)----了解Windows系统漏洞

    一.WinXP中的漏洞 在WinXP中,常见的漏洞主要有UPNP服务漏洞.帮助与支持中心漏洞.压缩文件夹漏洞.服务拒绝漏洞.RDP漏洞以及热键漏洞. 1.UPNP服务漏洞 漏洞描述:UPNP(Univ ...