Dance Dance Revolution

Time limit: 3.000 seconds

Mr. White, a fat man, now is crazy about a game named ``Dance, Dance, Revolution". But his dance skill is
so poor that he could not dance a dance, even if he dances arduously every time. Does ``DDR" just mean him
a perfect method to squander his pounds? No way. He still expects that he will be regarded as ``Terpsichorean
White" one day. So he is considering writing a program to plan the movement sequence of his feet, so that he
may save his strength on dancing. Now he looks forward to dancing easily instead of sweatily.
``DDR" is a dancing game that requires the dancer to use his feet to tread on the points according to the
direction sequence in the game. There are one central point and four side points in the game. Those side points
are classified as top, left, bottom and right. For the sake of explanation, we mark them integers. That is, the
central point is 0, the top is 1, the left is 2, the bottom is 3, and the right is 4, as the figure below shows:

At the beginning the dancer's two feet stay on the central point. According to the direction sequence, the
dancer has to move one of his feet to the special points. For example, if the sequence requires him to move to
the top point at first, he may move either of his feet from point 0 to point 1 (Note: Not both of his feet). Also,
if the sequence then requires him to move to the bottom point, he may move either of his feet to point 3,
regardless whether to use the foot that stays on point 0 or the one that stays on point 1.
There is a strange rule in the game: moving both of his feet to the same point is not allowed. For instance, if
the sequence requires the dancer to the bottom point and one of his feet already sta ys on point 3, he should
stay the very foot on the same point and tread again, instead of moving the other one to point 3.
After dancing for a long time, Mr. White can calculate how much strength will be consumed when he moves
from one point to another. Moving one of his feet from the central point to any side points will consume 2
units of his strength. Moving from one side point to another adjacent side point will consume 3 units, such as
from the top point to the left point. Moving from one side point to the opposite side point will consume 4
units, such as from the top point to the bottom point. Yet, if he stays on the same point and tread again, he will
use 1 unit.
Assume that the sequence requires Mr. White to move to point 1 2 2 4. His feet may stays on
(point 0, point 0) (0, 1) (2, 1) (2, 1) (2, 4). In this couple of integers, the former number
represents the point of his left foot, and the latter represents the point of his right foot. In this way, he has to
consume 8 units of his strength. If he tries another pas, he will have to consume much more strength. The 8
units of strength is the least cost.

Input
The input file will consist of a series of direction sequences. Each direction sequence contains a sequence of
numbers. Ea ch number should either be 1, 2, 3, or 4, and each represents one of the four directions. A value
of 0 in the direction sequence indicates the end of direction sequence. And this value should be excluded from
the direction sequence. The input file ends if the sequence contains a single 0.
Output
For each direction sequence, print the least units of strength will be consumed. The result should be a single
integer on a line by itself. Any more white spaces or blank lines are not allowable.
Sample Input
1 2 2 4 0
1 2 3 4 1 2 3 3 4 2 0
0
Sample Output
8
22
Shanghai 2000-2001

题解:

线性动态规划。维护一个三维数组f[i][x][y]表示在第i步左脚在x,右脚在y消耗最小的体力。

注意初始化f=MAX_NUMBER。f[1][a[1]][0]=2;f[1][0][a[1]]=2;

动态转移方程:

f[i][a[i]][j]=min(f[i][a[i]][j],f[i-1][k][j]+effort(k,a[i]));

f[i][j][a[i]]=min(f[i][j][a[i]],f[i-1][j][k]+effort(k,a[i]));

代码:

 #include<stdio.h>
#include<string.h>
#include<stdbool.h>
int i,j,n,
a[],f[][][]; int
pre()
{
memset(a,,sizeof(a));
memset(f,,sizeof(f));
return ;
} int
init()
{
while(true)
{
n++;
scanf("%d",&a[n]);
if(a[n]==)
{
n--;
break;
}
} f[][a[]][]=;
f[][][a[]]=;
return ;
} int
max(int a,int b)
{
if(a>b) return(a);
else return(b);
} int
min(int a,int b)
{
if(a<b) return(a);
else return(b);
}
int
effort(int a,int b)
{
int p;
if((min(a,b)==)&&(max(a,b)!=)) return();
p=max(a,b)-min(a,b);
if(p== || p==) return();
if(p==) return();
if(p==) return();
} int
dp()
{
int i,j,k,mini;
for(i=;i<=n;i++)
for(j=;j<=;j++)
for(k=;k<=;k++)
{
f[i][a[i]][j]=min(f[i][a[i]][j],f[i-][k][j]+effort(k,a[i]));
f[i][j][a[i]]=min(f[i][j][a[i]],f[i-][j][k]+effort(k,a[i]));
} mini=;
for(i=;i<=;i++)
mini=min(mini,min(f[n][a[n]][i],f[n][i][a[n]])); printf("%d\n",mini);
return ;
} int
main()
{
while(true)
{
pre();
n=;
scanf("%d",&a[n]);
if(a[n]==) break;
init();
dp();
}
return ;
}

[LA] 2031 Dance Dance Revolution的更多相关文章

  1. UVA 1291 十四 Dance Dance Revolution

    Dance Dance Revolution Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Su ...

  2. 递推DP UVA 1291 Dance Dance Revolution

    题目传送门 题意:给一串跳舞的动作,至少一只脚落到指定的位置,不同的走法有不同的体力消耗,问最小体力消费多少分析:dp[i][j][k] 表示前i个动作,当前状态(j, k)的最小消费,状态转移方程: ...

  3. Dance Dance Revolution

    今天我们来讲 Dance Dance Revolution这题 本题原网址 注意本题为多组输入输出,直到输入单个零而止(题面有点小问题) 很明显,此题为一道动态规划题(请不要妄想用贪心算法过这题,尽管 ...

  4. LA 2031

    Mr. White, a fat man, now is crazy about a game named ``Dance, Dance, Revolution". But his danc ...

  5. UVALive - 2031 Dance Dance Revolution 三维dp

    题目大意:有一个胖子在玩跳舞机.刚開始的位置在(0,0).跳舞机有四个方向键,上左下右分别相应1,2,3,4.如今有下面规则 1.假设从0位置移动到随意四个位置,消耗能量2 2.假设从非0位置跳到相邻 ...

  6. 2000 Asia shanghai Dance Dance Revolution

    思路:dp[i][x][y]表示第i个序列中,右脚在x位置,左脚在y位置时,其最小花费. 那么dp[i][x][y]=min(dp[i-1][a[i]][y]+cost[a[i]][x],dp[i-1 ...

  7. UVA 1291 Dance Dance Revolution(DP)

    意甲冠军:跳舞机有一个上5积分,分别central, top, bottom, left, right分,区区足站立还是需要1点物理,从一个单纯的脚central点上须要2点体力,从一个点上移动到相邻 ...

  8. TCP/UDP端口列表

    http://zh.wikipedia.org/wiki/TCP/UDP%E7%AB%AF%E5%8F%A3%E5%88%97%E8%A1%A8 TCP/UDP端口列表     本条目可通过翻译外语维 ...

  9. TCP/UDP 常用端口列表

    计算机之间依照互联网传输层TCP/IP协议不同的协议通信,都有不同的对应端口.所以,利用短信(datagram)的UDP,所采用的端口号码不一定和采用TCP的端口号码一样.以下为两种通信协议的端口列表 ...

随机推荐

  1. Codeforces 56D Changing a String

    http://codeforces.com/contest/56/problem/D 题目大意: 一个字符串变为目标字符串,可以执行插入,置换和删除3种操作,求最少操作数. 思路:dp[i][j]代表 ...

  2. NOI2012 魔幻棋盘

    http://www.lydsy.com/JudgeOnline/problem.php?id=2877 二维线段树. 好恶...... B类数据: 棋盘是一维的. 我们有一个结论: $gcd(a_{ ...

  3. Android:TextView跑马灯-详解

    Android:TextView跑马灯_详解 引言: TextView之所以需要跑马灯,是由于文字太长,或者是吸引眼球. 关键代码如下: android:singleLine="true&q ...

  4. thinkphp分页时修改last显示标题

    需要修改Page.class.php里lastSuffix为false,这样才能修改last显示标题. 然后就可以设置了 或者直接在方法中声明: $p->lastSuffix = false; ...

  5. java之File

    1.文件创建.重命名.删除 code: package com.test; import java.io.File; import java.io.IOException; public class ...

  6. Web Service 初步了解

    Web Service见名之意就是网络上的一些服务,解决的问题就是如何使用这些服务,因为软件的开发有各种各样的语言,利用Java,C#,VB.NET,PHP等等,如何使这些语言编写的程序能够进行互通, ...

  7. HDU 2025 查找最大元素

    查找最大元素 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  8. Android开发有用的站点

    在github上面找到一个个人认为比較好的站点,好在能够方便下载开发工具.我的AndroidStudio就是在上面下载的.安装了一直在使用.该 网址主要收集整理Android开发所需的Android ...

  9. java 图片 批量 压缩 +所有压缩

    /* oldsrc  : 原图片地址目录 如 'd:/'    newsrc  : 压缩后图片地址目录 如 'e:/'    widthdist,heightdist : 压缩后的宽和高       ...

  10. openssl AES加密算法API的使用示例

    openssl为用户提供了丰富的指令,同时也提供了供编程调用的API,本文以使用128位aes算法的ecb模式进行加密和解密验证,如下所示 第一种方法,直接使用aes算法提供的api进行调用,代码如下 ...