hdu3870-Catch the Theves(平面图最小割)
解析:平面图最小割,把面当成点,然后用最短路求最小割,详见百度
代码
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
typedef __int64 LL;
const LL INF=;
const int maxn=**;
int N,eid,head[maxn];
struct edge{ int v,w,next; }E[*maxn];
void AddEdge(int u,int v,int w)
{
E[++eid].v=v; E[eid].w=w; E[eid].next=head[u]; head[u]=eid;
E[++eid].v=u; E[eid].w=w; E[eid].next=head[v]; head[v]=eid;
}
int f(int x,int y){ return x*(N-)+y; }
struct node
{
int u;
LL d;
node(int u=,LL d=):u(u),d(d){}
bool operator < (const node& t) const{ return d>t.d; }
};
priority_queue<node> que;
LL D[maxn];
bool vis[maxn];
int Dij(int S,int T)
{
while(!que.empty()) que.pop();
for(int i=;i<maxn;i++) D[i]=INF;
D[S]=;
memset(vis,false,sizeof(vis));
que.push(node(S,));
while(!que.empty())
{
node t=que.top(); que.pop();
int u=t.u;
if(vis[u]) continue;
vis[u]=true;
for(int i=head[u];i!=-;i=E[i].next)
{
edge& e=E[i];
int v=e.v,w=e.w;
if(D[v]>D[u]+w)
{
D[v]=D[u]+w;
que.push(node(v,D[v]));
}
}
}
return D[T];
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&N);
int s=,t=(N-)*(N-)+;
memset(head,-,sizeof(head));
eid=;
int u,v,w;
for(int i=;i<=N;i++)
for(int j=;j<=N;j++)
{
scanf("%d",&w);
if(i==&&j<N)
{
u=s; v=j;
AddEdge(u,v,w);
}
if(i==N&&j<N)
{
u=f(i-,j); v=t;
AddEdge(u,v,w);
}
if(<i&&i<N&&j<N)
{
u=f(i-,j);
v=f(i-,j);
AddEdge(u,v,w);
}
if(j==&&i<N)
{
u=f(i-,j); v=t;
AddEdge(u,v,w);
}
if(j==N&&i<N)
{
u=f(i-,j-); v=s;
AddEdge(u,v,w);
}
if(<j&&j<N&&i<N)
{
u=f(i-,j-);
v=f(i-,j);
AddEdge(u,v,w);
}
}
printf("%d\n",Dij(s,t));
}
return ;
}
hdu3870-Catch the Theves(平面图最小割)的更多相关文章
- tyvj P1209 - 拦截导弹 平面图最小割&&模型转化
P1209 - 拦截导弹 From admin Normal (OI)总时限:6s 内存限制:128MB 代码长度限制:64KB 背景 Background 实中编程者联盟为了培养技 ...
- [BZOJ 2007] [Noi2010] 海拔 【平面图最小割(对偶图最短路)】
题目链接:BZOJ - 2007 题目分析 首先,左上角的高度是 0 ,右下角的高度是 1.那么所有点的高度一定要在 0 与 1 之间.然而选取 [0, 1] 的任何一个实数,都可以用整数 0 或 1 ...
- B20J_2007_[Noi2010]海拔_平面图最小割转对偶图+堆优化Dij
B20J_2007_[Noi2010]海拔_平面图最小割转对偶图+堆优化Dij 题意:城市被东西向和南北向的主干道划分为n×n个区域.城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向 ...
- 【平面图最小割】BZOJ1001- [BeiJing2006]狼抓兔子
[题目大意]左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路 1:(x,y)<==>(x+1,y) 2:(x,y)<==>(x,y+1) ...
- 【平面图最小割】BZOJ2007-[NOI2010]海拔
[题目大意] 城市被东西向和南北向的主干道划分为n×n个区域,包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路.现得到了每天每条道路两个方向的人流量.每一个交叉路口都有海拔,每向上爬h ...
- BZOJ 2007 海拔(平面图最小割转对偶图最短路)
首先注意到,把一个点的海拔定为>1的数是毫无意义的.实际上,可以转化为把这些点的海拔要么定为0,要么定为1. 其次,如果一个点周围的点的海拔没有和它相同的,那么这个点的海拔也是可以优化的,即把这 ...
- bzoj 1001 狼抓兔子 —— 平面图最小割(最短路)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1001 平面图最小割可以转化成最短路问题: 建图时看清楚题目的 input ... 代码如下: ...
- 【BZOJ1001】狼抓兔子(平面图最小割转最短路)
题意:有一张平面图,求它的最小割.N,M.表示网格的大小,N,M均小于等于1000. 左上角点为(1,1),右下角点为(N,M).有以下三种类型的道路 1:(x,y)<==>(x+1,y ...
- BZOJ2007/LG2046 「NOI2010」海拔 平面图最小割转对偶图最短路
问题描述 BZOJ2007 LG2046 题解 发现左上角海拔为 \(0\) ,右上角海拔为 \(1\) . 上坡要付出代价,下坡没有收益,所以有坡度的路越少越好. 所以海拔为 \(1\) 的点,和海 ...
随机推荐
- MYSQL中的语句
MYSQL中的语句 decimal(8,2):最多存10位数的数字,小数点后保存两位.如:999999.99
- poj 3273 Monthly Expense(二分搜索之最大化最小值)
Description Farmer John ≤ moneyi ≤ ,) that he will need to spend each day over the next N ( ≤ N ≤ ,) ...
- shell脚本一条命令直接发送http请求(xjl456852原创)
我们知道nc命令是一个网络工具.可以连接tcp/udp.也能模拟发送http请求. 现在介绍通过shell脚本,一条命令直接发送http请求. 命令如下,可以对下面的地址等信息自行修改: #!/bin ...
- Java之面向对象相关问题集
面向对象的特征有哪些方面 1.抽象: 抽象就是忽略一个主题中与当前目标无关的那些方面,以便更充分地注意与当前目标有关的方面.抽象并不打算了解所有问题,而仅仅是选择当中的一部分,临时不用部分细节. 抽 ...
- nignx日志格式
web-master的nginx格式: log_format web_format '$remote_addr $remote_port $remote_user [$time_local] ' '& ...
- ORA-02069: global_names parameter must be set to TRUE for this operation
原因:在对远程表增删改操作的时候,调用了本地函数. 比如:insert into trans_load_rate@DC values(rate_s(1)); trans_load_rate是DC库的 ...
- MySql 事务+异常处理+异常抛出
-- 测试用表 -- innodb 支持事务 CREATE TABLE `tb_test` ( `id` ) NOT NULL AUTO_INCREMENT, `name` ) NOT NULL, P ...
- css实现两端对齐~
今天做表单时遇到让上下两个字段对齐的情况,手机号码.用户名. 然后今天在网上找了找相关方法,发现确实是没有什么好的方法解决,特别是当需要兼容的时候.找到了两个我觉得相对还不错的方法: 方法一.是在司徒 ...
- 让DIV垂直居中的几种办法
1.使用CSS3 的伸缩盒布局 <!doctype html> <html> <head> <meta charset="utf-8"&g ...
- Katana概述
OWIN owin是web services和framework组件之间的抽象.抽象包括两个核心要素: environment dictionary 这个数据结构存储处理HTTP请求必须的状态和相关的 ...