Investment
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 8019   Accepted: 2747

Description

John never knew he had a grand-uncle, until he received the notary's letter. He learned that his late grand-uncle had gathered a lot of money, somewhere in South-America, and that John was the only inheritor. 

John did not need that much money for the moment. But he realized that it would be a good idea to store this capital in a safe place, and have it grow until he decided to retire. The bank convinced him that a certain kind of bond was interesting for him. 

This kind of bond has a fixed value, and gives a fixed amount of yearly interest, payed to the owner at the end of each year. The bond has no fixed term. Bonds are available in different sizes. The larger ones usually give a better interest. Soon John realized
that the optimal set of bonds to buy was not trivial to figure out. Moreover, after a few years his capital would have grown, and the schedule had to be re-evaluated. 

Assume the following bonds are available:

Value Annual

interest
4000

3000
400

250

With a capital of e10 000 one could buy two bonds of $4 000, giving a yearly interest of $800. Buying two bonds of $3 000, and one of $4 000 is a better idea, as it gives a yearly interest of $900. After two years the capital has grown to $11 800, and it makes
sense to sell a $3 000 one and buy a $4 000 one, so the annual interest grows to $1 050. This is where this story grows unlikely: the bank does not charge for buying and selling bonds. Next year the total sum is $12 850, which allows for three times $4 000,
giving a yearly interest of $1 200. 

Here is your problem: given an amount to begin with, a number of years, and a set of bonds with their values and interests, find out how big the amount may grow in the given period, using the best schedule for buying and selling bonds.

Input

The first line contains a single positive integer N which is the number of test cases. The test cases follow. 

The first line of a test case contains two positive integers: the amount to start with (at most $1 000 000), and the number of years the capital may grow (at most 40). 

The following line contains a single number: the number d (1 <= d <= 10) of available bonds. 

The next d lines each contain the description of a bond. The description of a bond consists of two positive integers: the value of the bond, and the yearly interest for that bond. The value of a bond is always a multiple of $1 000. The interest of a bond is
never more than 10% of its value.

Output

For each test case, output – on a separate line – the capital at the end of the period, after an optimal schedule of buying and selling.

Sample Input

1
10000 4
2
4000 400
3000 250

Sample Output

14050

题意:给定一个容量为weight的背包并且一開始本金为weight,再给定n个物品,每种物品的重量是w[i],价值是v[i],数量无限。将这n种物品有选择的装入背包中,使背包价值最大,一年后本金会加上背包中的价值,然后又一次分配背包物品,给定年份m,求m年后本金是多少。

题解:因为每种物品的重量都是1000的倍数,所以能够将每种物品和背包容量/=1000以降低内存消耗,因为1000000*1.1^40 / 1000 = 45000多,所以dp数组开到5万就足够了,剩下的就是全然背包问题了,将每年获得的最大价值增加本金中,最后再输出本金就可以。状态转移方程:dp[i][j] = max(dp[i-1][j-k*w[i] + k*v[i]),0<=k<=totalWeight/v[i];压缩成一维数组后内层循环顺序。

#include <stdio.h>
#include <string.h>
#define maxn 50000 int dp[maxn], w[42], v[42]; int main()
{
int t, totalWeight, years, i, j, capital, n;
scanf("%d", &t);
while(t--){
scanf("%d%d", &totalWeight, &years);
capital = totalWeight;
scanf("%d", &n);
for(i = 1; i <= n; ++i){
scanf("%d%d", &w[i], &v[i]);
w[i] /= 1000;
}
while(years--){
totalWeight = capital / 1000;
memset(dp, 0, sizeof(dp));
for(i = 1; i <= n; ++i){
for(j = w[i]; j <= totalWeight; ++j){
if(dp[j] < dp[j - w[i]] + v[i])
dp[j] = dp[j - w[i]] + v[i];
}
}
capital += dp[totalWeight];
}
printf("%d\n", capital);
}
return 0;
}

POJ2063 Investment 【全然背包】的更多相关文章

  1. HDU 1248 寒冰王座(全然背包:入门题)

    HDU 1248 寒冰王座(全然背包:入门题) http://acm.hdu.edu.cn/showproblem.php?pid=1248 题意: 不死族的巫妖王发工资拉,死亡骑士拿到一张N元的钞票 ...

  2. HDU 4508 湫湫系列故事——减肥记I(全然背包)

    HDU 4508 湫湫系列故事--减肥记I(全然背包) http://acm.hdu.edu.cn/showproblem.php?pid=4508 题意: 有n种食物, 每种食物吃了能获得val[i ...

  3. A_全然背包

    /* copyright: Grant Yuan algorithm: 全然背包 time : 2014.7.18 __________________________________________ ...

  4. nyist oj 311 全然背包 (动态规划经典题)

    全然背包 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描写叙述 直接说题意,全然背包定义有N种物品和一个容量为V的背包.每种物品都有无限件可用.第i种物品的体积是c,价值是 ...

  5. HDU 1114 Piggy-Bank 全然背包

    Piggy-Bank Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit S ...

  6. poj 1384 Piggy-Bank(全然背包)

    http://poj.org/problem?id=1384 Piggy-Bank Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...

  7. UVA 10465 Homer Simpson(全然背包: 二维目标条件)

    UVA 10465 Homer Simpson(全然背包: 二维目标条件) http://uva.onlinejudge.org/index.php? option=com_onlinejudge&a ...

  8. [2012山东ACM省赛] Pick apples (贪心,全然背包,枚举)

    Pick apples Time Limit: 1000MS Memory limit: 165536K 题目描写叙述 Once ago, there is a mystery yard which ...

  9. UVA 357 Let Me Count The Ways(全然背包)

    UVA 357 Let Me Count The Ways(全然背包) http://uva.onlinejudge.org/index.php?option=com_onlinejudge& ...

  10. HDU 1284 钱币兑换问题(全然背包:入门题)

    HDU 1284 钱币兑换问题(全然背包:入门题) http://acm.hdu.edu.cn/showproblem.php?pid=1284 题意: 在一个国家仅有1分,2分.3分硬币,将钱N ( ...

随机推荐

  1. MySQL_数据分页查询(limit用法)

    取前5条数据 select * from table_name limit 0,5 或 select * from table_name limit 5 取第11条到第15条数据,共5条 select ...

  2. Ubuntu 查找命令

    Ubuntu 查找文件夹 使用find命令查找find / -name 文件夹名称 -type d找到结果中含有路径 查找命令 从根目录开始查找所有扩展名为.log的文本文件,并找出包含”ERROR” ...

  3. C++ Primer笔记9_构造函数_拷贝构造(深拷贝与浅拷贝)

    1.构造函数: >构造函数是一个特殊的.与类同名的成员函数,用于给每一个成员设置适当的初始值. >构造函数不能有返回值,函数名与类名同样. >缺省构造函数时,系统将自己主动调用该缺省 ...

  4. git创建分支

    1.创建本地分支名称为dev的本地分支 git branch dev 2.将本地分支添加到远程分支 git push origin dev 3.查看创建的本地分支, 带有*符号的分支,代表当前所在分支 ...

  5. 推荐JVM的9款编程语言杀手开发利器

    随着各种各样的编程语言铺地盖地向我们涌来,软件世界似乎变得有点疯狂了.JVM的帝国在不断地壮大,它已经不满足于只作为Java语言的运行平台.它勇敢地将自己的触角伸向了JRuby,Groovy等等,未来 ...

  6. %1 不是有效的 Win32 应用程序

    客户环境windows server 2008,iis 6.0. 站点配置与以往并无差别,更新类库后出现“%1 不是有效的 Win32 应用程序”错误,如下图: 系统登录页面可以正常加载,登录过程中出 ...

  7. ios消息的交互方式

    注意这些都是界面回传(即从第二个界面传到第一个界面,从第一个界面传到第二个界面的时候用第二个界面的属性即可)   iOS消息的交互方式有4种,分别为:通知,代理,block,kvo 现在我们对这个4中 ...

  8. golang Rsa

    package models import ( "crypto/rand" "crypto/rsa" "crypto/x509" " ...

  9. VB execl文件后台代码,基础语法

    Excel宏与VBA 程序设计实验指导1 实验1 Excel宏与VBA 语法基础 一.实验目的 1.熟练掌握录制宏.执行宏.加载宏的方法: 2.熟练使用Excel VBA编辑环境,掌握VBA的编辑工具 ...

  10. Android 信鸽推送通知栏不显示推送的通知

    使用信鸽推送,却怎么也没反应.经过查看log发现确实是收到了推送过来的消息了,其中有这么一行: W/dalvikvm(23255): VFY: unable to resolve virtual me ...