题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=23362

题意:定义含有平方数因子的数为完全平方数(平方数因子不包含1)。求第k个非完全平方数。

思路:我们先求出[1, n]的非完全平方数的个数,然后利用二分来查找正好等于k时的n(注意这样的n可能不止一个,求最左边的)。关键是,怎么求出前者,我们可以利用容斥原理,用n - [1, n]内完全平方数的个数,求[1, n]内完全平方数的个数,用容斥发现前面的系数就是莫比乌斯函数,直接用莫比乌斯反演即可,结果为sigma(mu[i]*(n/(i*i)))。

code:

 #include <cstdio>
#include <cstring>
using namespace std; typedef long long LL; const LL INF = 2e10 + ;
const int MAXN = ; bool check[MAXN];
int primes[MAXN];
int mu[MAXN];
LL k; void moblus()
{
memset(check, false, sizeof(check));
mu[] = ;
int cnt = ;
for (int i = ; i < MAXN; ++i) {
if (!check[i]) {
primes[cnt++] = i;
mu[i] = -;
}
for (int j = ; j < cnt; ++j) {
if (i * primes[j] > MAXN) break;
check[i * primes[j]] = true;
if (i % primes[j] == ) {
mu[i * primes[j]] = ;
break;
} else {
mu[i * primes[j]] = -mu[i];
}
}
}
} LL cal(LL n)
{
LL ret = n;
for (LL i = ; i * i <= n; ++i) {
ret += mu[i] * (n / (i * i));
}
return ret;
} int main()
{
moblus();
int nCase;
scanf("%d", &nCase);
while (nCase--) {
scanf("%lld", &k);
LL lhs = 1L;
LL rhs = INF;
LL mid;
while (lhs < rhs) {
mid = (rhs + lhs) / ;
LL tmp = cal(mid);
if (tmp < k) lhs = mid + ;
else rhs = mid;
}
printf("%lld\n", lhs);
}
return ;
}

BZOJ 2440 完全平方数(莫比乌斯反演+二分查找)的更多相关文章

  1. BZOJ 2440 完全平方数(莫比乌斯反演,容斥原理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第K个没有平方因子的数 思路:首先,可以二分数字,然后问题就转变成x以内有多少无平方因 ...

  2. BZOJ 2440 完全平方数 莫比乌斯反演模板题

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2440 题目大意: 求第k个无平方因子的数 思路: 二分答案x,求1-x中有多少个平方因 ...

  3. bzoj 2440 简单莫比乌斯反演

    题目大意: 找第k个非平方数,平方数定义为一个数存在一个因子可以用某个数的平方来表示 这里首先需要考虑到二分才可以接下来做 二分去查找[1 , x]区间内非平方数的个数,后面就是简单的莫比乌斯反演了 ...

  4. HYSBZ 2440 完全平方数(莫比乌斯反演)

    链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2440 若i为质数,n为i*i的倍数,则称n为含平方因子数. 求1~n的无平方因子数. F(x) ...

  5. bzoj 2440 (莫比乌斯函数)

    bzoj 2440 完全平方数 题意:找出第k个不是完全平方数的正整数倍的数. 例如 4  9  16  25 36什么的 通过容斥原理,我们减去所有完全数  4有n/4个,但是36这种会被重复减去, ...

  6. bzoj [SDOI2014]数表 莫比乌斯反演 BIT

    bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...

  7. BZOJ 2440 完全平方数

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 966  Solved: 457 [Submit][Sta ...

  8. bzoj 1101 Zap —— 莫比乌斯反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 直接莫比乌斯反演. 代码如下: #include<cstdio> #inc ...

  9. BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 2534  Solved: 1129 [Submit][Status][Discu ...

随机推荐

  1. mysql timestamp 值不合法问题

    Create Table: CREATE TABLE `RecruitmentDesc` ( `sn` int(11) NOT NULL AUTO_INCREMENT COMMENT '编号(自增字段 ...

  2. IE6兼容性问题及IE6常见bug详细汇总---转载

    1.IE6怪异解析之padding与border算入宽高 原因:未加文档声明造成非盒模型解析 解决方法:加入文档声明<!doctype html> 2.IE6在块元素.左右浮动.设定mar ...

  3. 神奇的i=i++

    最近在看c语言,被神奇的i=i++吸引,其实感觉编程是一件有趣的事情(特别喜欢算法).下面是我的测试,linux 下 gcc编译 #include<stdio.h>  main () { ...

  4. 更改DataTable列名方法

    1.通过DataAdapter将查询的结果填充到DataSet的表(DataTable)中: 如:dataAdapter.Fill(dataSet),这时dataSet的表名默认为Table 如果使用 ...

  5. sass安装步骤

    sass 基于Ruby,首先需要安装Ruby.当然也有node-sass,那是另外一种使用方式了.如果能FQ的,就不用看了,主要写给翻不了墙的人用. 1.安装Ruby,ruby下载地址: http:/ ...

  6. SQL SERVER2012新分页方式 轉載

    SQL SERVER2012在ORDER BY 子句中加入了新元素offset,允许用户在排序完成的结果集中自定义输出行范围,大大简化了分页SQL的书写方式和效率. SQL SERVER2012在OR ...

  7. Method Swizzle黑魔法,修改 ios 系统类库方法 SEL IMP

    Method Swizzle黑魔法,修改 ios 系统类库方法   版权声明:本文为博主原创文章,未经博主允许不得转载. 一般来说,系统提供的方法已经足够开发了,但是有的时候有些需求用普通方法不好做. ...

  8. 一行统计shell

    cat count.log | awk '{print $7}' | awk '{if ($1 == "-") empty++ }END {print NR, empty, emp ...

  9. 关于Python网络爬虫实战笔记③

    Python网络爬虫实战笔记③如何下载韩寒博客文章 Python网络爬虫实战笔记③如何下载韩寒博客文章 target:下载全部的文章 1. 博客列表页面规则 也就是, http://blog.sina ...

  10. Android WindowManager 小结

    Android---系统服务之 ---WindowManager WindowManager是Android中一个重要的服务(Service ).WindowManager Service 是全局的, ...