题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=23362

题意:定义含有平方数因子的数为完全平方数(平方数因子不包含1)。求第k个非完全平方数。

思路:我们先求出[1, n]的非完全平方数的个数,然后利用二分来查找正好等于k时的n(注意这样的n可能不止一个,求最左边的)。关键是,怎么求出前者,我们可以利用容斥原理,用n - [1, n]内完全平方数的个数,求[1, n]内完全平方数的个数,用容斥发现前面的系数就是莫比乌斯函数,直接用莫比乌斯反演即可,结果为sigma(mu[i]*(n/(i*i)))。

code:

 #include <cstdio>
#include <cstring>
using namespace std; typedef long long LL; const LL INF = 2e10 + ;
const int MAXN = ; bool check[MAXN];
int primes[MAXN];
int mu[MAXN];
LL k; void moblus()
{
memset(check, false, sizeof(check));
mu[] = ;
int cnt = ;
for (int i = ; i < MAXN; ++i) {
if (!check[i]) {
primes[cnt++] = i;
mu[i] = -;
}
for (int j = ; j < cnt; ++j) {
if (i * primes[j] > MAXN) break;
check[i * primes[j]] = true;
if (i % primes[j] == ) {
mu[i * primes[j]] = ;
break;
} else {
mu[i * primes[j]] = -mu[i];
}
}
}
} LL cal(LL n)
{
LL ret = n;
for (LL i = ; i * i <= n; ++i) {
ret += mu[i] * (n / (i * i));
}
return ret;
} int main()
{
moblus();
int nCase;
scanf("%d", &nCase);
while (nCase--) {
scanf("%lld", &k);
LL lhs = 1L;
LL rhs = INF;
LL mid;
while (lhs < rhs) {
mid = (rhs + lhs) / ;
LL tmp = cal(mid);
if (tmp < k) lhs = mid + ;
else rhs = mid;
}
printf("%lld\n", lhs);
}
return ;
}

BZOJ 2440 完全平方数(莫比乌斯反演+二分查找)的更多相关文章

  1. BZOJ 2440 完全平方数(莫比乌斯反演,容斥原理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第K个没有平方因子的数 思路:首先,可以二分数字,然后问题就转变成x以内有多少无平方因 ...

  2. BZOJ 2440 完全平方数 莫比乌斯反演模板题

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2440 题目大意: 求第k个无平方因子的数 思路: 二分答案x,求1-x中有多少个平方因 ...

  3. bzoj 2440 简单莫比乌斯反演

    题目大意: 找第k个非平方数,平方数定义为一个数存在一个因子可以用某个数的平方来表示 这里首先需要考虑到二分才可以接下来做 二分去查找[1 , x]区间内非平方数的个数,后面就是简单的莫比乌斯反演了 ...

  4. HYSBZ 2440 完全平方数(莫比乌斯反演)

    链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2440 若i为质数,n为i*i的倍数,则称n为含平方因子数. 求1~n的无平方因子数. F(x) ...

  5. bzoj 2440 (莫比乌斯函数)

    bzoj 2440 完全平方数 题意:找出第k个不是完全平方数的正整数倍的数. 例如 4  9  16  25 36什么的 通过容斥原理,我们减去所有完全数  4有n/4个,但是36这种会被重复减去, ...

  6. bzoj [SDOI2014]数表 莫比乌斯反演 BIT

    bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...

  7. BZOJ 2440 完全平方数

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 966  Solved: 457 [Submit][Sta ...

  8. bzoj 1101 Zap —— 莫比乌斯反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 直接莫比乌斯反演. 代码如下: #include<cstdio> #inc ...

  9. BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 2534  Solved: 1129 [Submit][Status][Discu ...

随机推荐

  1. Android下pm 命令详解

    Sam在看相关PackageManager代码时,无意中发现Android 下提供一个pm命令,通常放在/system/bin/下.这个命令与Package有关,且非常实用.所以研究之.0. Usag ...

  2. mongodb的 或 查询,实践总结

    PostcardRecord.findOne({user:userid, $or : [ { at:{$gte:start.valueOf(), $lte:end.valueOf()} } , { i ...

  3. dijkstra 优先队列最短路模板

    ;;*maxn];,):id(a),dist(b){}        ));        ;i<=n;i++)dist[i]=inf;        dist[st]=;        ;i= ...

  4. 链表的实现 -- 数据结构与算法的javascript描述 第六章

    链表 链表是由一组节点组成的集合.每个节点都使用一个对象的引用指向它的后继.指向另一个节点的引用叫做链 结构示意图 : 链表头需要我们标识 head { element:head,next:obj1 ...

  5. 一个JAVA代码

    public class HelloJava { public static void main(String[] args) { System.out.println("这"); ...

  6. JavaEE学习之设计模式

    转自:http://mp.weixin.qq.com/s?__biz=MjM5OTMxMzA4NQ==&mid=221913387&idx=2&sn=d5d006300722f ...

  7. jq 22 一个很好图片显示

    Picbox 示例页面:http://www.jq22.com/Demo961

  8. CPUから広がり

    处理技术: 超标量是通过内置多条流水线来同时执行多个处理器,其实质是以空间换取时间.而超流水线是通过细化流水.提高主频,使得在一个机器周期内完成一个甚至多个操作,其实质是以时间换取空间. スター: 真 ...

  9. MVC中Filter拦截问题记录之重定向陷阱

    出错环境:被拦截的页面中使用了未实例化的对象,比如只有登录后才有的UserInfor对象. 理想中:浏览器请求页面时,会被Filter拦截,然后重定向到指定页面: 实际现象:将断点打入Filter中, ...

  10. 本地环境下 WordPress 环境搭建与安装

    本地环境:Ubuntu 14.04 使用软件: WordPress 4.1.1 中文优化版 EasyEngine 安装步骤: 安装 LNMP 环境; wget -qO ee rt.cx/ee & ...