理解Spark RDD中的aggregate函数(转)
针对Spark的RDD,API中有一个aggregate函数,本人理解起来费了很大劲,明白之后,mark一下,供以后参考。
首先,Spark文档中aggregate函数定义如下
def aggregate[U](zeroValue: U)(seqOp: (U, T) ⇒ U, combOp: (U, U) ⇒ U)(implicit arg0: ClassTag[U]): U
Aggregate the elements of each partition, and then the results for all the partitions, using given combine functions and a neutral "zero value". This function can return a different result type, U, than the type of this RDD, T. Thus, we need one operation for merging a T into an U and one operation for merging two U's, as in scala.TraversableOnce. Both of these functions are allowed to modify and return their first argument instead of creating a new U to avoid memory allocation. seqOp操作会聚合各分区中的元素,然后combOp操作把所有分区的聚合结果再次聚合,两个操作的初始值都是zeroValue. seqOp的操作是遍历分区中的所有元素(T),第一个T跟zeroValue做操作,结果再作为与第二个T做操作的zeroValue,直到遍历完整个分区。combOp操作是把各分区聚合的结果,再聚合。aggregate函数返回一个跟RDD不同类型的值。因此,需要一个操作seqOp来把分区中的元素T合并成一个U,另外一个操作combOp把所有U聚合。
zeroValue
the initial value for the accumulated result of each partition for the seqOp operator, and also the initial value for the combine results from different partitions for the combOp operator - this will typically be the neutral element (e.g. Nil for list concatenation or 0 for summation)
seqOp
an operator used to accumulate results within a partition
combOp
an associative operator used to combine results from different partitions
举个例子。假如List(1,2,3,4,5,6,7,8,9,10),对List求平均数,使用aggregate可以这样操作。
C:\Windows\System32>scala
Welcome to Scala 2.11.8 (Java HotSpot(TM) Client VM, Java 1.8.0_91).
Type in expressions for evaluation. Or try :help.
scala> val rdd = List(1,2,3,4,5,6,7,8,9)
rdd: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)
scala> rdd.par.aggregate((0,0))(
(acc,number) => (acc._1 + number, acc._2 + 1),
(par1,par2) => (par1._1 + par2._1, par1._2 + par2._2)
)
res0: (Int, Int) = (45,9)
scala> res0._1 / res0._2
res1: Int = 5
过程大概这样:
首先,初始值是(0,0),这个值在后面2步会用到。
然后,(acc,number) => (acc._1 + number, acc._2 + 1),number即是函数定义中的T,这里即是List中的元素。所以acc._1 + number, acc._2 + 1的过程如下。
1. 0+1, 0+1
2. 1+2, 1+1
3. 3+3, 2+1
4. 6+4, 3+1
5. 10+5, 4+1
6. 15+6, 5+1
7. 21+7, 6+1
8. 28+8, 7+1
9. 36+9, 8+1
结果即是(45,9)。这里演示的是单线程计算过程,实际Spark执行中是分布式计算,可能会把List分成多个分区,假如3个,p1(1,2,3,4),p2(5,6,7,8),p3(9),经过计算各分区的的结果(10,4),(26,4),(9,1),这样,执行(par1,par2) => (par1._1 + par2._1, par1._2 + par2._2)就是(10+26+9,4+4+1)即(45,9).再求平均值就简单了。
————————————————
版权声明:本文为CSDN博主「飞鸿踏雪Ben归来」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qingyang0320/article/details/51603243
理解Spark RDD中的aggregate函数(转)的更多相关文章
- Spark RDD中的aggregate函数
转载自:http://blog.csdn.net/qingyang0320/article/details/51603243 针对Spark的RDD,API中有一个aggregate函数,本人理解起来 ...
- Spark Streaming中的操作函数讲解
Spark Streaming中的操作函数讲解 根据根据Spark官方文档中的描述,在Spark Streaming应用中,一个DStream对象可以调用多种操作,主要分为以下几类 Transform ...
- spark RDD transformation与action函数整理
1.创建RDD val lines = sc.parallelize(List("pandas","i like pandas")) 2.加载本地文件到RDD ...
- Spark Streaming中的操作函数分析
根据Spark官方文档中的描述,在Spark Streaming应用中,一个DStream对象可以调用多种操作,主要分为以下几类 Transformations Window Operations J ...
- 深入理解Spark RDD
RDD是什么? RDD,全称是Reslilient Distributed Datasets,是一个容错的,并行的数据结构,可以让用户显式地将数据存储到磁盘和内存中,并能控制数据的分区.同时,RDD还 ...
- 深入理解asp.net中的 __doPostBack函数
前段时间做一个.net网站的时候,用到了模拟前端按钮刷新updatePanel进行局部刷新的时候,遇见了这个问题,当时没顾上记下来,查看网上资料,记下来留着以后查看. 很早以前,当我刚接触asp.NE ...
- 深入源码理解Spark RDD的数据分区原理
通过内存创建RDD的分区设置 1.示例代码 在创建RDD的时候,我们可以从内存中进行创建:输出保存为文件.为了演示效果,我们的示例代码如下: import org.apache.spark.{Spar ...
- Spark RDD中Runtime流程解析
一.Runtime架构图 (1)从Spark Runtime的角度讲,包括五大核心对象:Master.Worker.Executor.Driver.CoarseGrainedExecutorBack ...
- 轻松理解 Spark 的 aggregate 方法
2019-04-20 关键字: Spark 的 agrregate 作用.Scala 的 aggregate 是什么 Spark 编程中的 aggregate 方法还是比较常用的.本篇文章站在初学者的 ...
随机推荐
- python之处理excel表格
xlrd xlrd是python中一个第三方的用于读取excle表格的模块,很多企业在没有使用计算机管理前大多使用表格来管理数据,所以导入表格还是非常常用的! 安装xlrd pip install ...
- MySQL倒序索引测试1
测试环境 MySQL Community Server 准备测试数据 DROP TABLE TB001; CREATE TABLE TB001(ID INT PRIMARY KEY AUTO_INCR ...
- anaconda更新tensorflow
在anaconda prompt中,输入: pip install --upgrade --ignore-installed tensorflow gpu版本输入: pip install --upg ...
- ingress controller 注解使用
ingress controller 注解使用 官网github注解地址: https://github.com/kubernetes/ingress-nginx/blob/master/docs/u ...
- Intel重大漏洞之Meltdown和Spectre
史上最大漏洞危机:影响所有 iPhone.Android.PC 设备,修复困难重重 近日,英特尔的日子可并不好过. 作为全球知名芯片制造商,任何有关英特尔芯片漏洞的问题都会导致全球上百万设备遭受牵连. ...
- eclipse使用mybatis实现Java与xml文件相互跳转
原文:https://jingyan.baidu.com/article/8ebacdf0f06c8c09f65cd5a0.html 一直习惯使用eclipse,看见同事使用IDEA,直接从Java类 ...
- BFS算法的优化 双向宽度优先搜索
双向宽度优先搜索 (Bidirectional BFS) 算法适用于如下的场景: 无向图 所有边的长度都为 1 或者长度都一样 同时给出了起点和终点 以上 3 个条件都满足的时候,可以使用双向宽度优先 ...
- selenium+python自动化100-centos上搭建selenium启动chrome浏览器headless无界面模式
环境准备 前言 selenium在windows机器上运行,每次会启动界面,运行很不稳定.于是想到用chrome来了的headless无界面模式,确实方便了不少. 为了提高自动化运行的效率和稳定性,于 ...
- 201671010425邱世妍 团队评审&课程总结
实验十四 团队项目评审&课程学习总结 项目 内容 这个作业属于哪个课程 http://www.cnblogs.com/nwnu-daizh/ 这个作业的要求在哪里 https://www.cn ...
- 16、Python面向对象进阶
一.对象的继承 Python中支持一个类同时继承多个父类 class Parent1: pass class Parent2: pass class Sub1(Parent1, Parent2): p ...