题目描述:

D. Intercity Travelling

time limit per test

1.5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Leha is planning his journey from Moscow to Saratov. He hates trains, so he has decided to get from one city to another by car.

The path from Moscow to Saratov can be represented as a straight line (well, it's not that straight in reality, but in this problem we will consider it to be straight), and the distance between Moscow and Saratov is n

km. Let's say that Moscow is situated at the point with coordinate km, and Saratov — at coordinate n

Driving for a long time may be really difficult. Formally, if Leha has already covered i

kilometers since he stopped to have a rest, he considers the difficulty of covering-th kilometer as a**i+1

. The difficulty of the journey is denoted as the sum of difficulties of each kilometer in the journey.

Fortunately, there may be some rest sites between Moscow and Saratov. Every integer point from 1

to may contain a rest site. When Leha enters a rest site, he may have a rest, and the next kilometer will have difficulty a1

, and so on.

For example, if n=5

and there is a rest site in coordinate , the difficulty of journey will be 2a1+2a2+a3, the second one — a2, the fourth — a2. Another example: if n=7 and 5

.

Leha doesn't know which integer points contain rest sites. So he has to consider every possible situation. Obviously, there are 2n−1

different distributions of rest sites (two distributions are different if there exists some point such that it contains a rest site in exactly one of these distributions). Leha considers all these distributions to be equiprobable. He wants to calculate p

Obviously, p⋅2n−1

is an integer number. You have to calculate it modulo

.

Input

The first line contains one number n

(

) — the distance from Moscow to Saratov.

The second line contains n

integer numbers , a2 (1≤a1≤a2≤⋯≤a**n≤106 is the difficulty of i

Output

Print one number — p⋅2n−1

, taken modulo

.

Examples

Input

Copy

21 2

Output

Copy

5

Input

Copy

41 3 3 7

Output

Copy

60

思路:

做到吐血(菜是本质。题目是说求\(P*2^{n-1}\) ,又因为总共的可能情况就是\(2^{n-1}\),这样实际上就是求在所有的建立休息站的情况下a1有几种+a2有几种+...+an有几种,即困难度的和。

经过思考我们可以发现这样一个事实:a1是最容易出现的而an是最不容易出现的,实际上,an出现的可能就一个:无休息站。要出现a1,则需要休息站后面得有1个单位长度,要出现a2,则要休息站后面有2个单位长度,以此类推。这样我们可以来举一个n==4的例子:

a1: 0----1----2----3----4

a1: |----|,这个区间段表示一个单位长度。区间段的前面断点处必须有一个休息站才能出现a1,而后面建不建站都可以,后面可以建站的点有1,2,3,2^3种可能

-----------|----|,区间段移动到这里,同样,前端的必须建一个站保证出现a1,后面有2,3共2^2种可能

----------------|----|,到这里是有些区别,前段建站情况下后面有3可建站,前面出现1可建站,共2^2种可能

---------------------|----|,这里前方有1,2可建站,共2^2种可能

对于要出现a1,有2^3+3* 2^2=2 ^(4-1)+(4-1)* 2^(4-1-1)种可能的情况

a2:0----1----2----3----4

a2:|----------|,区间在这里时,前端保证建站,才可能出现a2,后端有2,3共2^2种可能

a2:------|----------|,这里前端建站,后面3可建站,可不建共2^1种可能

a2: -----------|-----------|,这里时1,可建站,共2^1种可能

对于要出现a2,有\(2^2+2* 2^1= 2^{4-2}+(4-2)* 2^{4-2-1}\)种可能的情况

类似的,有

ai,有\(2^{n-i}+(n-i)* 2^{n-i-1}\)种可能

最后答案要求\(\sum_{i=1}^{n}a[i]*s[i]\)的值。s[i]就是对应a[i]可能的情况数

注意可能会爆longlong(一定),时刻小心取余,我就在最后写了个sum+=...这忘记取余了,就惨兮兮

还有读入数据挺大的?好像,加个快速读入吧,如果不了解?看一下上篇博客(嘻嘻)

这题其实可以及时算,不用快速幂每次算2的幂,直接O(n)预处理进数组,后面O(1)用就行

代码:

#include <iostream>
#include <cstdio>
#define max_n 1000005
#define mod 998244353
using namespace std;
int n;
long long a[max_n];
long long s[max_n];
long long mi[max_n] = {1,2,4,8,16,32};
void generator(int n)
{
for(int i = 6;i<=n;i++)
{
mi[i] = (mi[i-1]*2)%mod;
}
}
inline int read()//整数输入模板
{
int X=0,w=0; char ch=0;
while(!isdigit(ch)) {w|=ch=='-';ch=getchar();}
while(isdigit(ch)) X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
return w?-X:X;
}
#pragma optimize(2)
int main()
{
n = read();
for(int i = 1;i<=n;i++)
{
a[i] = read();
}
//s[1] = 1;
//s[2] = 3;
//s[3] = 8;
//s[4] = 20;
generator(n);
long long sum = 0;
for(int i = 1;i<=n;i++)
{
s[i] = (mi[n-i]+(mi[n-i-1]*(n-i)))%mod;
sum = (sum%mod+(s[i]%mod*a[i]%mod)%mod)%mod;
}
//cout << "len " << endl;
/*for(int i = 1;i<=n;i++)
{
cout << s[i] << " ";
}
cout << endl;*/
printf("%I64d\n",sum);
return 0;
}

参考文章:

思路是自己的,代码参考了下,因为超时聊(qwq)

luyehao1,Intercity Travelling(数学公式推导 cf div2 E),https://blog.csdn.net/luyehao1/article/details/81080860

Codeforces D. Intercity Travelling(区间组合)的更多相关文章

  1. Codeforces 1009E Intercity Travelling | 概率与期望

    题目链接 题目大意: 一个人要从$A$地前往$B$地,两地相距$N$千米,$A$地在第$0$千米处,$B$地在第$N$千米处. 从$A$地开始,每隔$1$千米都有$\dfrac{1}{2}$的概率拥有 ...

  2. CodeForces - 1009E Intercity Travelling

    题面在这里! 可以发现全是求和,直接拆开算贡献就好了 #include<bits/stdc++.h> #define ll long long using namespace std; c ...

  3. Codeforces 1009 E. Intercity Travelling(计数)

    1009 E. Intercity Travelling 题意:一段路n个点,走i千米有对应的a[i]疲劳值.但是可以选择在除终点外的其余n-1个点休息,则下一个点开始,疲劳值从a[1]开始累加.休息 ...

  4. E. Intercity Travelling

    E. Intercity Travelling time limit per test 1.5 seconds memory limit per test 256 megabytes input st ...

  5. Intercity Travelling CodeForces - 1009E (组合计数)

    大意: 有一段$n$千米的路, 每一次走$1$千米, 每走完一次可以休息一次, 每连续走$x$次, 消耗$a[1]+...+a[x]$的能量. 休息随机, 求消耗能量的期望$\times 2^{n-1 ...

  6. Educational Codeforces Round 47 (Rated for Div. 2) :E. Intercity Travelling

    题目链接:http://codeforces.com/contest/1009/problem/E 解题心得: 一个比较简单的组合数学,还需要找一些规律,自己把方向想得差不多了但是硬是找不到规律,还是 ...

  7. Educational Codeforces Round 47 (Rated for Div. 2)E.Intercity Travelling

    题目链接 大意:一段旅途长度N,中间可能存在N-1个休息站,连续走k长度时,疲劳值为a1+a2+...+aka_1+a_2+...+a_ka1​+a2​+...+ak​,休息后a1a_1a1​开始计, ...

  8. CodeForces 149D Coloring Brackets 区间DP

    http://codeforces.com/problemset/problem/149/D 题意: 给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2 ...

  9. Codeforces - 149D 不错的区间DP

    题意:有一个字符串 s. 这个字符串是一个完全匹配的括号序列.在这个完全匹配的括号序列里,每个括号都有一个和它匹配的括号 你现在可以给这个匹配的括号序列中的括号染色,且有三个要求: 每个括号只有三种情 ...

随机推荐

  1. Gerrit - 一些基本用法

    1 - 主配置文件 主配置文件位于$GERRIT_SITE/etc/gerrit.config目录 [gerrit@mt101 ~]$ cat gerrit_testsite/etc/gerrit.c ...

  2. 【Docker学习之六】Docker容器互联

    环境 docker-ce-19.03.1-3.el7.x86_64 centos 7 一.基于Volume的互联就是-v参数,将本机文件或目录挂载到容器目录,实现文件目录共享 二.基于Link的互联 ...

  3. DevOps-ISC,CSS,Prometheus,Ansible ,Terraform,zabbix

    https://www.terraform.io/ Terraform Use Infrastructure as Code to provision and manage any cloud, in ...

  4. (语法基础)浅谈面向切面编程(AOP)

    一:前言 面向切面编程是一个很重要的编程思想,想要写出一个便于维护的程序,理解AOP并且能熟练的在实际编程中合理的运用AOP思想是很有必要的 二:AOP的基本概念 基础概念:AOP中文翻译面向切面编程 ...

  5. Linux下 Nginx安装与配置(Centos7)

    1:下载解压 #下载 wget http://nginx.org/download/nginx-1.14.0.tar.gz #解压 tar -xzf nginx-1.14.0.tar.gz cd ng ...

  6. vscode 前端常用插件推荐

    1.  vscode 简介vscode是微软开发的的一款代码编辑器,就如官网上说的一样,vscode重新定义(redefined)了代码编辑器.当前市面上常用的轻型代码编辑器主要是:sublime,n ...

  7. 解决使用RabbitTemplate操作RabbitMQ,发生The channelMax limit is reached. Try later.问题

    使用RabbitTemplate操纵RabbitMQ,每个RabbitTemplate等于一个connection,每个connection最多支持2048个channel,当hannel达到2048 ...

  8. ZooKeeper学习笔记(一)——概述

    zookeeper学习笔记(一)--概述 1. 概述 Zookeeper是一个开源的分布式的,为分布式应用提供协调服务的Apache项目.zookeeper从设计模式的角度来理解:是一个基于观察者设计 ...

  9. Unity - 绘制正五边形网格

    本文简述了Unity中绘制正五边形网格的基本方法:计算顶点信息.设置三角形覆盖信息.创建配置mesh 绘制方法 基本思路:计算出五边形顶点坐标信息作为数组,设置三角形包围方式,再创建新的mesh配置v ...

  10. 2)NET CORE特性与优势

    先看看netcore有哪些特性,哪些优点,与.net frameworkd 差异吧: l  跨平台: 可以在 Windows.macOS 和 Linux 操作系统上运行. l  跨体系结构保持一致:  ...