Codeforces D. Intercity Travelling(区间组合)
题目描述:
D. Intercity Travelling
time limit per test
1.5 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
Leha is planning his journey from Moscow to Saratov. He hates trains, so he has decided to get from one city to another by car.
The path from Moscow to Saratov can be represented as a straight line (well, it's not that straight in reality, but in this problem we will consider it to be straight), and the distance between Moscow and Saratov is n
km. Let's say that Moscow is situated at the point with coordinate km, and Saratov — at coordinate n
Driving for a long time may be really difficult. Formally, if Leha has already covered i
kilometers since he stopped to have a rest, he considers the difficulty of covering-th kilometer as a**i+1
. The difficulty of the journey is denoted as the sum of difficulties of each kilometer in the journey.
Fortunately, there may be some rest sites between Moscow and Saratov. Every integer point from 1
to may contain a rest site. When Leha enters a rest site, he may have a rest, and the next kilometer will have difficulty a1
, and so on.
For example, if n=5
and there is a rest site in coordinate , the difficulty of journey will be 2a1+2a2+a3, the second one — a2, the fourth — a2. Another example: if n=7 and 5
.
Leha doesn't know which integer points contain rest sites. So he has to consider every possible situation. Obviously, there are 2n−1
different distributions of rest sites (two distributions are different if there exists some point such that it contains a rest site in exactly one of these distributions). Leha considers all these distributions to be equiprobable. He wants to calculate p
Obviously, p⋅2n−1
is an integer number. You have to calculate it modulo
.
Input
The first line contains one number n
(
) — the distance from Moscow to Saratov.
The second line contains n
integer numbers , a2 (1≤a1≤a2≤⋯≤a**n≤106 is the difficulty of i
Output
Print one number — p⋅2n−1
, taken modulo
.
Examples
Input
Copy
21 2
Output
Copy
5
Input
Copy
41 3 3 7
Output
Copy
60
思路:
做到吐血(菜是本质。题目是说求\(P*2^{n-1}\) ,又因为总共的可能情况就是\(2^{n-1}\),这样实际上就是求在所有的建立休息站的情况下a1有几种+a2有几种+...+an有几种,即困难度的和。
经过思考我们可以发现这样一个事实:a1是最容易出现的而an是最不容易出现的,实际上,an出现的可能就一个:无休息站。要出现a1,则需要休息站后面得有1个单位长度,要出现a2,则要休息站后面有2个单位长度,以此类推。这样我们可以来举一个n==4的例子:
a1: 0----1----2----3----4
a1: |----|,这个区间段表示一个单位长度。区间段的前面断点处必须有一个休息站才能出现a1,而后面建不建站都可以,后面可以建站的点有1,2,3,2^3种可能
-----------|----|,区间段移动到这里,同样,前端的必须建一个站保证出现a1,后面有2,3共2^2种可能
----------------|----|,到这里是有些区别,前段建站情况下后面有3可建站,前面出现1可建站,共2^2种可能
---------------------|----|,这里前方有1,2可建站,共2^2种可能
对于要出现a1,有2^3+3* 2^2=2 ^(4-1)+(4-1)* 2^(4-1-1)种可能的情况
a2:0----1----2----3----4
a2:|----------|,区间在这里时,前端保证建站,才可能出现a2,后端有2,3共2^2种可能
a2:------|----------|,这里前端建站,后面3可建站,可不建共2^1种可能
a2: -----------|-----------|,这里时1,可建站,共2^1种可能
对于要出现a2,有\(2^2+2* 2^1= 2^{4-2}+(4-2)* 2^{4-2-1}\)种可能的情况
类似的,有
ai,有\(2^{n-i}+(n-i)* 2^{n-i-1}\)种可能
最后答案要求\(\sum_{i=1}^{n}a[i]*s[i]\)的值。s[i]就是对应a[i]可能的情况数
注意可能会爆longlong(一定),时刻小心取余,我就在最后写了个sum+=...这忘记取余了,就惨兮兮
还有读入数据挺大的?好像,加个快速读入吧,如果不了解?看一下上篇博客(嘻嘻)
这题其实可以及时算,不用快速幂每次算2的幂,直接O(n)预处理进数组,后面O(1)用就行
代码:
#include <iostream>
#include <cstdio>
#define max_n 1000005
#define mod 998244353
using namespace std;
int n;
long long a[max_n];
long long s[max_n];
long long mi[max_n] = {1,2,4,8,16,32};
void generator(int n)
{
for(int i = 6;i<=n;i++)
{
mi[i] = (mi[i-1]*2)%mod;
}
}
inline int read()//整数输入模板
{
int X=0,w=0; char ch=0;
while(!isdigit(ch)) {w|=ch=='-';ch=getchar();}
while(isdigit(ch)) X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
return w?-X:X;
}
#pragma optimize(2)
int main()
{
n = read();
for(int i = 1;i<=n;i++)
{
a[i] = read();
}
//s[1] = 1;
//s[2] = 3;
//s[3] = 8;
//s[4] = 20;
generator(n);
long long sum = 0;
for(int i = 1;i<=n;i++)
{
s[i] = (mi[n-i]+(mi[n-i-1]*(n-i)))%mod;
sum = (sum%mod+(s[i]%mod*a[i]%mod)%mod)%mod;
}
//cout << "len " << endl;
/*for(int i = 1;i<=n;i++)
{
cout << s[i] << " ";
}
cout << endl;*/
printf("%I64d\n",sum);
return 0;
}
参考文章:
思路是自己的,代码参考了下,因为超时聊(qwq)
luyehao1,Intercity Travelling(数学公式推导 cf div2 E),https://blog.csdn.net/luyehao1/article/details/81080860
Codeforces D. Intercity Travelling(区间组合)的更多相关文章
- Codeforces 1009E Intercity Travelling | 概率与期望
题目链接 题目大意: 一个人要从$A$地前往$B$地,两地相距$N$千米,$A$地在第$0$千米处,$B$地在第$N$千米处. 从$A$地开始,每隔$1$千米都有$\dfrac{1}{2}$的概率拥有 ...
- CodeForces - 1009E Intercity Travelling
题面在这里! 可以发现全是求和,直接拆开算贡献就好了 #include<bits/stdc++.h> #define ll long long using namespace std; c ...
- Codeforces 1009 E. Intercity Travelling(计数)
1009 E. Intercity Travelling 题意:一段路n个点,走i千米有对应的a[i]疲劳值.但是可以选择在除终点外的其余n-1个点休息,则下一个点开始,疲劳值从a[1]开始累加.休息 ...
- E. Intercity Travelling
E. Intercity Travelling time limit per test 1.5 seconds memory limit per test 256 megabytes input st ...
- Intercity Travelling CodeForces - 1009E (组合计数)
大意: 有一段$n$千米的路, 每一次走$1$千米, 每走完一次可以休息一次, 每连续走$x$次, 消耗$a[1]+...+a[x]$的能量. 休息随机, 求消耗能量的期望$\times 2^{n-1 ...
- Educational Codeforces Round 47 (Rated for Div. 2) :E. Intercity Travelling
题目链接:http://codeforces.com/contest/1009/problem/E 解题心得: 一个比较简单的组合数学,还需要找一些规律,自己把方向想得差不多了但是硬是找不到规律,还是 ...
- Educational Codeforces Round 47 (Rated for Div. 2)E.Intercity Travelling
题目链接 大意:一段旅途长度N,中间可能存在N-1个休息站,连续走k长度时,疲劳值为a1+a2+...+aka_1+a_2+...+a_ka1+a2+...+ak,休息后a1a_1a1开始计, ...
- CodeForces 149D Coloring Brackets 区间DP
http://codeforces.com/problemset/problem/149/D 题意: 给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2 ...
- Codeforces - 149D 不错的区间DP
题意:有一个字符串 s. 这个字符串是一个完全匹配的括号序列.在这个完全匹配的括号序列里,每个括号都有一个和它匹配的括号 你现在可以给这个匹配的括号序列中的括号染色,且有三个要求: 每个括号只有三种情 ...
随机推荐
- 如何录制高清GIF格式的图片
如何录制高清GIF格式的图片 工具:傲软GIF 下载地址:https://www.apowersoft.cn/gif 特点:质量高,能够一帧一帧的修改 使用简单.就不说了.自行尝试.这里只是提供一个制 ...
- 浏览器解析js和type判断数据类型
### 浏览器解析: - 1.当浏览器(内核.引擎)解析和渲染js的时候,会给js提供一个运行的环境,这个环境叫做“全局作用域(后端global / 客服端window scope)” - 2.代码自 ...
- MYSQL --Subquery returns more than 1 row查询结果多于一行
Subquery returns more than 1 row表示子查询返回了多行数据 例如: select * from table1 where table1.colums=(select co ...
- checkbox之全选和反选
先导入jquery组件 <input type="checkbox" id="checkall">全选<input type="ch ...
- Docker Swarm部署集群
一.Swarm简介 Swarm是Docker的一个编排工具,参考官网:https://docs.docker.com/engine/swarm/ Swarm 模式简介 要在Swarm模式下运行dock ...
- mysql执行顺序与join连接
mysql加载顺序 手写顺序 SELECT DISTINCT <select list> FROM <left_table> join <join_type> JO ...
- Spring-Cloud之Ribbon负载均衡-3
一.负载均衡是指将负载分摊到多个执行单元上,常见的负载均衡有两种方式.一种是独立进程单元,通过负载均衡策略,将请求转发到不同的执行单元上,例如 Ngnix .另一种是将负载均衡逻辑以代码的形式封装到服 ...
- C#类型成员:构造函数
一.构造函数 构造函数是类的特殊方法,它永远不会返回值(即使是void),并且方法名和类名相同,同样支持重载.在使用new关键字创建对象时构造函数被间接调用,为对象初始化字段和属性的值. 无参构造函数 ...
- spark-sql使用笔记
如何使用hive的udf 可以使用spark-sql --jars /opt/hive/udf.jar,指定udf的路径 还可以在spark-default.conf里指定spark.jars /op ...
- 测度(Measure)
测度概述 数学上,测度(Measure)是一个函数,它对一个给定集合的某些子集指定一个数,这个数可以比作大小.体积.概率等等.传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出 ...