[Luogu5319][BJOI2019]奥术神杖(分数规划+AC自动机)
对最终答案取对数,得到$\ln(Ans)=\frac{1}{c}\sum \ln(v_i)$,典型的分数规划问题。
二分答案后,对所有咒语串建立AC自动机,然后套路地$f[i][j]$表示走到T的第i个字符,当前在自动机的第j个位置,能得到的最大收益。
注意二分的r初始不能设太大,25就可以了,二分终止的eps最好设到1e-5,否则会WA或者TLE。
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=,inf=1e9;
const double eps=1e-;
char S[N],ss[N][N],pre[N][N];
int n,m,x,nd,sz[N],fail[N],q[N],son[N][],fr[N][N];
double v[N],w[N],f[N][N]; void add(char s[],double v){
int x=,len=strlen(s+);
rep(i,,len){
int c=s[i]-'';
if (!son[x][c]) son[x][c]=++nd;
x=son[x][c];
}
w[x]+=v; sz[x]++;
} void bfs(){
int st=,ed=;
rep(i,,) if (son[][i]) q[++ed]=son[][i];
while (st!=ed){
int x=q[++st];
rep(i,,) if (son[x][i]) fail[son[x][i]]=son[fail[x]][i],q[++ed]=son[x][i];
else son[x][i]=son[fail[x]][i];
w[x]+=w[fail[x]]; sz[x]+=sz[fail[x]];
}
} double solve(double mid){
rep(i,,n) rep(j,,nd) f[i][j]=-inf;
f[][]=; double ans=-inf;
rep(i,,n-) rep(j,,nd){
if (S[i+]!='.'){
int t=son[j][S[i+]-''];
if (f[i][j]+w[t]-mid*sz[t]>f[i+][t])
f[i+][t]=f[i][j]+w[t]-mid*sz[t],fr[i+][t]=j;
continue;
}
rep(c,,){
int t=son[j][c];
if (f[i][j]+w[t]-mid*sz[t]>f[i+][t])
f[i+][t]=f[i][j]+w[t]-mid*sz[t],fr[i+][t]=j,pre[i+][t]=c+'';
}
}
rep(i,,nd) ans=max(ans,f[n][i]); return ans;
} void Print(int i,int j){
if (!i) return;
Print(i-,fr[i][j]);
if (S[i]!='.') putchar(S[i]); else putchar(pre[i][j]);
} int main(){
freopen("arcana.in","r",stdin);
freopen("arcana.out","w",stdout);
scanf("%d%d%s",&n,&m,S+);
rep(i,,m) scanf("%s%d",ss[i]+,&x),v[i]=log(x),add(ss[i],v[i]);
double L=,R=; bfs();
while (L+eps<R){
double mid=(L+R)/;
if (solve(mid)>) L=mid; else R=mid;
}
solve(L); int mn=-inf,mnd=;
rep(i,,nd) if (f[n][i]>mn) mn=f[n][i],mnd=i;
Print(n,mnd);
return ;
}
[Luogu5319][BJOI2019]奥术神杖(分数规划+AC自动机)的更多相关文章
- luoguP5319 [BJOI2019]奥术神杖(分数规划,AC自动机DP)
luoguP5319 [BJOI2019]奥术神杖(分数规划,AC自动机DP) Luogu 题解时间 难点在于式子转化,设有c个满足的子串,即求最大的 $ ans = \sqrt[c]{\prod_{ ...
- [BJOI2019] 奥术神杖 [取log+AC自动机+dp]
题面 传送门 思路 首先,看到这个乘起来开根号的形式,应该能想到用取$\log$的方式做一个转化: $\sqrt[n]{\prod_i a_i}=\frac{1}{n}\sum_i \log_b a_ ...
- [BJOI2019]奥术神杖(分数规划+AC自动机+DP)
题解:很显然可以对权值取对数,然后把几何平均值转为算术平均值,然后很显然是分数规划.先对每个模式串建立AC自动机,每个节点w[i],sz[i]分别表示以其为前缀的字符串,然后再二分最优解k,然后w[i ...
- P5319-[BJOI2019]奥术神杖【0/1分数规划,AC自动机,dp】
正题 题目链接:https://www.luogu.com.cn/problem/P5319 题目大意 一个长度为\(n\)的串\(T\),用\(0\sim 9\)填充所有的\(.\). 然后给出\( ...
- [BJOI2019]奥术神杖(分数规划,动态规划,AC自动机)
[BJOI2019]奥术神杖(分数规划,动态规划,AC自动机) 题面 洛谷 题解 首先乘法取\(log\)变加法,开\(c\)次根变成除\(c\). 于是问题等价于最大化\(\displaystyle ...
- [BJOI2019]奥术神杖——AC自动机+DP+分数规划+二分答案
题目链接: [BJOI2019]奥术神杖 答案是$ans=\sqrt[c]{\prod_{i=1}^{c}v_{i}}=(\prod_{i=1}^{c}v_{i})^{\frac{1}{c}}$. 这 ...
- [BJOI2019]奥术神杖(AC自动机,DP,分数规划)
题目大意: 给出一个长度 $n$ 的字符串 $T$,只由数字和点组成.你可以把每个点替换成一个任意的数字.再给出 $m$ 个数字串 $S_i$,第 $i$ 个权值为 $t_i$. 对于一个替换方案,这 ...
- luogu P5319 [BJOI2019]奥术神杖
传送门 要求的东西带个根号,这玩意叫几何平均数,说到平均数,我们就能想到算术平均数(就是一般意义下的平均数),而这个东西是一堆数之积开根号,所以如果每个数取对数,那么乘法会变成加法,开根号变成除法,所 ...
- #loj3089 [BJOI2019]奥术神杖
卡精度好题 最关键的一步是几何平均数的\(ln\)等于所有数字取\(ln\)后的算术平均值 那么现在就变成了一个很裸的01分数规划问题,一个通用的思路就是二分答案 现在来考虑二分答案的底层怎么写 把所 ...
随机推荐
- linux下查看指定进程的所有连接信息(转)
定位某个进程的网络故障时经常需要用到的一个功能就是查找所有连接的信息.通常查找某个端口的连接信息使用 ss 或者 netstat 可以轻松拿到,如果是主动与别的机器建立的连接信息则可以通过 lsof ...
- 完美解决Cannot download "https://github.com/sass/node-sass/releases/download/binding.nod的问题
①:例如很多人第一步就会这样做: 出现:Cannot download "https://github.com/sass/node-sass/releases/download/版本号/XX ...
- 【转】asp获取【微信公众平台】Access Token的源代码下载
在做微信开发时候,经常要用到Access Token,但是官网提供的都是基于php写的,我用asp写了,有需要可以直接复制去用,模板消息,jdk上传图片,客服消息等全需要这个:'获取 access_t ...
- linux配置docker报错:ImportError: No module named yum
如题,安装docker后配置仓库报错: [root@centos ~]# yum-config-manager --add-repo https://download.docker.com/linux ...
- Java8的时间日期API
原先的时间 api 大部分已经过时了 Date构造器 需要传入年月日 但是对时间的加减操作比较麻烦 Calenda 加减比较方便 使用 LocalDate. LocalTime. LocalDa ...
- 使用 evo 工具评测 VI ORB SLAM2 在 EuRoC 上的结果
http://www.liuxiao.org/2017/11/%E4%BD%BF%E7%94%A8-evo-%E5%B7%A5%E5%85%B7%E8%AF%84%E6%B5%8B-vi-orb-sl ...
- Web.Config中配置字符串含引号的处理
配置文件中往往要用到一些特殊的字符, Web.Config默认编码格式为UTF-8,对于XML文件,要用到实体转义码来替换.对应关系如下: 字符 转义码 & 符号 & & 单引 ...
- 全面系统Python3入门+进阶-1-2 Python的特性
结束
- 使用Varnish为网站加速
(1).Varnish概述 Varnish是一款高性能的开源HTTP加速器,可以有效降低web服务器的负载,提升访问速度.根据官方的说法,Varnish是一个cache型的HTTP反向代理. Varn ...
- Ideal 使用帮助手册
1.设置Ideal启动时选择工作空间 将Reopen last project on starup 取消勾选