洛谷p1776宝物筛选
多重背包问题
物品数目已知
可以枚举每个物品
当做01背包来做
不过会超时
此时需要二进制拆分来优化
分解成新的物品
再跑一遍01背包即可
//二进制拆分+01背包
//设f[j]表示前i件物品花费恰好为j的最大价值
#include <cstdio>
#include <iostream>
using namespace std;
const int N = ;
int n, m, f[N], v[N], w[N], cnt, a, b, c;
int read() {
int s = , w = ;
char ch = getchar();
while(!isdigit(ch)) {if(ch == '-') w = -; ch = getchar();}
while(isdigit(ch)) {s = s * + ch - ''; ch = getchar();}
return s * w;
}
int main() {
n = read(), m = read();
for(int i = ; i <= n; i++) {
a = read(), b = read(), c = read();
for(int j = ; j <= c; j <<= ) {
v[++cnt] = a * j;
w[cnt] = b * j;
c -= j;
}
if(c) v[++cnt] = a * c, w[cnt] = b * c;
}
for(int i = ; i <= cnt; i++)
for(int j = m; j >= w[i]; j--)
f[j] = max(f[j], f[j - w[i]] + v[i]);
printf("%d\n", f[m]);
return ;
}
谢谢收看, 祝身体健康!
洛谷p1776宝物筛选的更多相关文章
- 洛谷P1776 宝物筛选_NOI导刊2010提高(02)
P1776 宝物筛选_NOI导刊2010提高(02) 题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了, ...
- 洛谷P1776 宝物筛选 题解 多重背包
题目链接:https://www.luogu.com.cn/problem/P1776 题目大意: 这道题目是一道 多重背包 的模板题. 首先告诉你 n 件物品和背包的容量 V ,然后分别告诉你 n ...
- 洛谷P1776 宝物筛选
一道很好的单调队列优化多重背包入门题 令\(v[i]\)表示重量,\(w[i]\)表示价格 ,\(c[i]\)表示最多可放的数量,不难推出朴素的转移方程如下: \(f[i][j]=max\{f[i-1 ...
- 洛谷P1776 宝物筛选_NOI导刊2010提高(02)(多重背包,单调队列)
为了学习单调队列优化DP奔向了此题... 基础的多重背包就不展开了.设\(f_{i,j}\)为选前\(i\)个物品,重量不超过\(j\)的最大价值,\(w\)为重量,\(v\)为价值(蒟蒻有强迫症,特 ...
- 洛谷 P1776 宝物筛选(多重背包)
题目传送门 解题思路: 可以转化成0-1背包来做,但暴力转化的话,时间不允许.所以就用了一个二进制划分的方法,将m个物品分成2,4,8,16,32......(2的次方)表示,可以证明这些数通过一定组 ...
- 背包问题的优化(洛谷1776 宝物筛选_NOI导刊)
背包型dp,但是没有看清数据范围差点认为是水题了,(然后诡异的拿了20分)标解是:2进制优化,比较简单把每一类物品看做若干个相互独立的物品,放在一个另外的数组里,然后全局跑一边01就可以.主要思想是: ...
- P1776 宝物筛选_NOI导刊2010提高(02)&& 多重背包二进制优化
多重背包, 要求 \(N\log N\) 复杂度 Solution 众所周和, \(1-N\) 之内的任何数可以由 \(2^{0}, 2^{1}, 2^{2} ... 2^{\log N}, N - ...
- [luogu P1776] 宝物筛选 解题报告(单调队列优化DP)
题目链接: https://www.luogu.org/problemnew/show/P1776 题目: 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF ...
- luogu||P1776||宝物筛选||多重背包||dp||二进制优化
题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了,小FF的采集车似乎装不下那么多宝物.看来小FF只能含泪 ...
随机推荐
- CentOS7 SUDO 笔记--没配置sudoer,为什么有的账号能用sudo命令,有的不能用
原来: 一.安装linux 创建的用户(管理员打钩)默认在 wheel组里. 1. 使用 cat /etc/passwd 查看用户所在组.中间那个数字是 groupid 不太好看 2.使用 cat / ...
- Password file not found:.../jmxremote.password
jmxremote.password 在jdk/jre/lib/management/下,jmxremote.password.template复制,去掉.template后缀 在配置JMX远程访问的 ...
- 【题解】L 国的战斗续之多路出击 [P2129]
[题解]L 国的战斗续之多路出击 [P2129] 传送门: \(L\) 国的战斗续之多路出击 \([P2129]\) [题目描述] 给出 \(n\) 个坐标,\(m\) 个指令,指令处理顺序应是从后往 ...
- DataGridView 行数据验证:当输入数据无效时不出现红色感叹号的Bug
private void dgvView_CellValidating(object sender, DataGridViewCellValidatingEventArgs e){ if ...
- redis的主从复制,哨兵值守
环境: 主服务器:192.168.10.10 Centos 7 redis-5.0.4 从服务器:192.168.10.129 Centos 7 redis-5.0.4 从服务器:192. ...
- css实现图片信息展示
<style> .layui-fluid{padding: 15px;} .img-responsive{display: block;width: 100%;max-width: 100 ...
- 金蝶BOS元模型分析
对一些需求变化多样的产品而言,做好可变性设计是非常重要的.国外做得好的有Siebel,国内有金蝶的BOS,实际上金蝶的BOS很多理念跟Siebel是相似的,呵呵...他们都是采用MDD的方式来解决可变 ...
- 由MQTT topic的正则表达式匹配引发的特殊字符"/"匹配思考
正则表达式中的'/'替换 近期项目对接OneNET的MQTT物联网套件,需要完成命令下发流程. 流程要求: (1)设备在接收平台下发的命令(topic为$sys/{pid}/{device-name} ...
- windows10 docker安装使用
一.安装部署 1.下载安装 https://hub.docker.com/editions/community/docker-ce-desktop-windows 需要注册完后,才可以下载.点击安装 ...
- win中Oracle简易客户端和plsql的配置
连接数据库有2种方式:在本机安装Oracle数据库或者是安装一个oracle简易客户端 当然,简易客户端跟oracle数据库比较少了一些功能 连接方式: 1)简易连接 sqlplus scott/ti ...