【LG5444】[APIO2019]奇怪装置

题面

洛谷

题目大意:

给定\(A,B\),对于\(\forall t\in \mathbb N\),有二元组\((x,y)=((t+\lfloor\frac tB\rfloor)\bmod A,t\bmod B)\)。

对于给定的\(n\)个区间\([l,r]\),要你求出\(t\in [l_1,r_1]\bigcup [l_2,r_2]...\bigcup [l_n,r_n]\)对应有多少个不同的二元组。

数据范围:

\(1\leq n\leq 10^6,1\leq A,B\leq 10^{18},0\leq l_i\leq r_i\leq 10^{18}\)。

题解

你首先要考虑到这种问题是有个循环节的 否则就会像我一样得到10分

设\(t_1<t_2\)所对应的二元组完全相同,那么

\[\begin{cases}
t_1+\lfloor\frac{t_1}{B} \rfloor \equiv t_2 + \lfloor \frac{t_2}{B} \rfloor(\bmod A)\\
t_1\equiv t_2(\bmod B)
\end{cases}
\]

那么根据第二个条件,我们不妨令$$t_1+kB=t_2,k\in \mathbb N$$

那么带到第一个式子中就是:

\[t_1+\lfloor\frac{t_1}{B}\rfloor\equiv t_1+kB+k+\lfloor\frac{t_1}{B}\rfloor(\bmod A)
\]

化简得:$$k(B+1)\equiv 0(\bmod A)$$

\(\therefore \frac{A}{gcd(A,B+1)}|k\),即\(k\)最小为\(\frac{A}{gcd(A,B+1)}\)。

那么循环节\(T=kB=\frac{AB}{gcd(A,B+1)}\)。

然后对于所有\([l,r]\)就可以转化为线段覆盖了,想怎么维护都行。

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <set>
using namespace std;
typedef long long ll;
inline ll gi() {
register ll data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const int MAX_N = 1e6 + 5;
ll N, A, B, l[MAX_N], r[MAX_N], T, ans;
multiset<pair<ll, int> > st;
void Add(ll l, ll r) { st.insert(make_pair(l, 1)), st.insert(make_pair(r + 1, -1)); }
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
N = gi(), A = gi(), B = gi(); ll d = __gcd(A, B + 1), sum = 0;
for (int i = 1; i <= N; i++) l[i] = gi(), r[i] = gi(), sum += r[i] - l[i] + 1;
if (1.0 * A / d * B > 1e18) return printf("%lld\n", sum) & 0;
T = A / d * B;
for (int i = 1; i <= N; i++) {
if (r[i] - l[i] + 1 >= T) return printf("%lld\n", T) & 0;
l[i] %= T, r[i] %= T;
if (l[i] > r[i]) Add(l[i], T - 1), Add(0, r[i]);
else Add(l[i], r[i]);
}
st.insert(make_pair(T, 0));
ll lst = -1, c = 0;
for (auto it : st) {
if (c > 0) ans += it.first - lst;
c += it.second, lst = it.first;
}
printf("%lld\n", ans);
return 0;
}

【LG5444】[APIO2019]奇怪装置的更多相关文章

  1. 【LOJ#3144】[APIO2019]奇怪装置(数论)

    [LOJ#3144][APIO2019]奇怪装置(数论) 题面 LOJ 题解 突然发现\(LOJ\)上有\(APIO\)的题啦,赶快来做一做. 这题是窝考场上切了的题嗷.写完暴力之后再推了推就推出正解 ...

  2. 题解-APIO2019奇怪装置

    problem loj-3144 题意概要:设函数 \(f(t)\) 的返回值为一个二元组,即 \(f(t)=((t+\lfloor \frac tB\rfloor)\bmod A, t\bmod B ...

  3. Luogu P5444 [APIO2019]奇怪装置

    题目 这种题目看上去就是有循环节的对吧. 在考场上,一个可行的方式是打表. 现在我们手推一下这个循环节. 记函数\(f(t)=(((t+\lfloor\frac tB\rfloor)\%A),(t\% ...

  4. [APIO2019] 奇怪装置

    $solution:$ 问题其实就是求两个式子的循环节. 钦定 $t\mod B=0$且 $(t\neq 0)$,其 $t$ 为循环节. 则将 $1$ 式拆开得 $\frac{t\times (B+1 ...

  5. P5444 [APIO2019]奇怪装置

    传送门 考虑求出最小的循环节 $G$ 使得 $t,t+G$ 得到的数对是一样的 由 $y \equiv t \mod B$ ,得到 $G$ 一定是 $B$ 的倍数,设 $zB=G$,则 $t,t+zB ...

  6. 洛谷$P5444\ [APIO2019]$奇怪装置 数论

    正解:数论 解题报告: 传送门$QwQ$ 我好像当初考的时候这题爆零了,,,部分分都没想到,,,我真的好菜$kk$ 考虑如果在$t_1,t_2$两个时刻有$x_1=x_2,y_1=y_2$是什么情况$ ...

  7. #3144. 「APIO 2019」奇怪装置

    #3144. 「APIO 2019」奇怪装置 题目描述 考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数 \(x\) 和 \(y\). 经过研究,科学家对该装置得出了一个 ...

  8. [APIO 2010] [LOJ 3144] 奇怪装置 (数学)

    [APIO 2010] [LOJ 3144] 奇怪装置 (数学) 题面 略 分析 考虑t1,t2时刻坐标相同的条件 \[\begin{cases} t_1+\lfloor \frac{t_1}{B} ...

  9. [APIO2019T1]奇怪装置

    考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数x和y.经过研究,科学家对该装置得出了一个结论:该装置是一个特殊的时钟,它从过去的某个时间点开始测量经过的时刻数t,但该装 ...

随机推荐

  1. [转帖]Linux监测某一时刻对外的IP连接情况

    Linux监测某一时刻对外的IP连接情况 https://blog.csdn.net/twt326/article/details/81454171 公司机器有病毒 需要分析一下. 之前有需要,在CS ...

  2. Sitecore性化 - 您需要了解的4件事

    Sitecore非常强大,是一个数字体验平台.它可以帮助您取悦并留住客户.它可以帮助您衡量和评估广告系列.它使你成为一个更好的营销人员.它可以帮助您获得结果! 它结合了易于使用的网站内容管理系统和数字 ...

  3. RabbitMQ 在Windows环境下安装

    1. 下载RabbitMQ和Erlang RabbitMQ下载地址  https://www.rabbitmq.com/install-windows.html RabbitMQ是用Erlang编程语 ...

  4. 数据库-io检测工具sqldeveloper-18.2.0.183.1748-x64 下载链接

    链接:https://pan.baidu.com/s/1R0ujc_9aXdc5O5i1nhNAlA 提取码:o6is

  5. 前端通过js获取微信公众号用户的唯一标识符openId

    微信公众号程序开发的时候,获取用户信息的时候,需要用到用户的openId,openId是微信用户的唯一标识符,这个操作可以后台实现也可以前端实现,之前项目里是通过后台来获取的,好像用到了一些三方的包, ...

  6. innodb和myisam对比

    MyISAM特点 1)不支持行锁(MyISAM只有表锁),读取时对需要读到的所有表加锁,写入时则对表加排他锁: 2)不支持事务 3)不支持外键 4)不支持崩溃后的安全恢复 5)在表有读取查询的同时,支 ...

  7. vue展示md文件,前端读取展示markdown文件

    方案1:每次都需要重新打包,每次修改都需要build 直接使用require + v-html: 核心代码如下: 1. 首先需要添加MD文件的loader就是 markdown-loader npm ...

  8. SQL Server Compact 3.5环境部署<转>

    通过使用 Microsoft Visual Studio 开发环境,可以开发使用 SQL Server Compact 3.5 的应用程序.Visual Studio 是开发和部署使用 SQL Ser ...

  9. c# 读数据库二进制流到图片

    public Bitmap PictureShow(string connectionString, string opName, string productType)        {       ...

  10. CTF-代码审计(2)

    1.bugku 备份是个好习惯 网址:http://123.206.87.240:8002/web16/ 进去什么都没有,题目说备份想到备份文件,所以直接再后面加个    .bak 拿到源码: < ...