hdu2643&&hdu2512——斯特林数&&贝尔数
hdu2643
题意:$n$ 个人的排名情况数($n \leq 100$)
分析:考虑 $n$ 个有区别的球放到 $m$ 个有区别的盒子里、无空盒的方案数为 $m!\cdot S(n, m)$。
这题中 $m$ 可取 $1 \sim n$(可能排名相同),累加即可。
#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const int maxn = +;
const int mod = ; int Sti[maxn][maxn], fact[maxn]; //第二类司特林数、贝尔数 void init()
{
fact[] = ;
for(int i = ;i < maxn;i++) fact[i] = fact[i-] * i % mod; Sti[][] = ;
for(int i = ;i < maxn;i++)
for(int j = ;j <= i;j++)
Sti[i][j] = (Sti[i-][j-] + 1LL * j * Sti[i-][j]) % mod; } int main()
{
init(); int T;
scanf("%d", &T);
while(T--)
{
int n;
scanf("%d", &n);
int ans = ;
for(int i = ;i <= n;i++) ans = (ans + 1LL * Sti[n][i] * fact[i]) % mod;
printf("%d\n", ans);
}
return ;
}
hdu2512
题意:相当于求 $n$ 个元素的集合划分数($1 \leq n \leq 2000$)
分析:即求第 $n$ 个贝尔数,$n$ 较小,直接用 $n^2$ 的暴力
#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const int maxn = +;
const int mod = ; int Sti[maxn][maxn], bell[maxn]; //第二类司特林数、贝尔数 void Stirling2()
{
Sti[][] = ;
for(int i = ;i < maxn;i++)
for(int j = ;j <= i;j++)
Sti[i][j] = (Sti[i-][j-] + 1LL * j * Sti[i-][j]) % mod;
} void init()
{
Stirling2(); bell[] = ;
for(int i = ;i < maxn;i++)
for(int j = ;j <= i;j++)
bell[i] = (bell[i] + Sti[i][j]) % mod; } int main()
{
init(); int T;
scanf("%d", &T);
while(T--)
{
int x;
scanf("%d", &x);
printf("%d\n", bell[x]);
}
return ;
}
参考链接:https://www.cnblogs.com/xiaoxian1369/archive/2011/08/26/2154783.html
hdu2643&&hdu2512——斯特林数&&贝尔数的更多相关文章
- HDU 2512 一卡通大冒险(第二类斯特林数+贝尔数)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2512 题目大意:因为长期钻研算法, 无暇顾及个人问题,BUAA ACM/ICPC 训练小组的帅哥们大部 ...
- hdu4767 Bell——求第n项贝尔数
题意 设第 $n$ 个Bell数为 $B_n$,求 $B_n \ mod \ 95041567$.($1 \leq n \leq 2^{31}$) 分析 贝尔数的概念和性质,维基百科上有,这里 ...
- 贝尔数(来自维基百科)& Stirling数
贝尔数 贝尔数以埃里克·坦普尔·贝尔(Eric Temple Bell)为名,是组合数学中的一组整数数列,开首是(OEIS的A000110数列): Bell Number Bn是基数为n的集合 ...
- bzoj 3501 PA2008 Cliquers Strike Back——贝尔数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3501 用贝尔三角形 p^2 地预处理 p 以内的贝尔数.可以模(mod-1)(它是每个分解下 ...
- bzoj 3501 PA2008 Cliquers Strike Back —— 贝尔数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3501 用贝尔三角预处理贝尔数,拆模数并在 \( p \) 进制下使用公式,因为这样每次角标增 ...
- 贝尔数--Codeforces908E. New Year and Entity Enumeration
给n<=50个长度m<=1000的二进制数,记他们为集合T,求满足下面条件的集合S数:令$M=2^m-1$,1.$a \epsilon S \Rightarrow a \ \ xor \ ...
- 斯特灵数 (Stirling数)
@维基百科 在组合数学,Stirling数可指两类数,都是由18世纪数学家James Stirling提出的. 第一类 s(4,2)=11 第一类Stirling数是有正负的,其绝对值是个元素的项目分 ...
- 卡特兰数 Catalan数 ( ACM 数论 组合 )
卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1) 编辑 收藏 引用 所属分类: ACM ( 数论 ...
- Bell(hdu4767+矩阵+中国剩余定理+bell数+Stirling数+欧几里德)
Bell Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status ...
随机推荐
- 51book机票接口对接,吐血整理(含PHP封装代码)
前言 最近在对接51book的机票接口,遇到了挺多坑,所以整理一份作为记录 机票有两个不同的接口,一个是机票,另一个是保险 一.申请 要接51book的机票,首先是要申请账号,这时候应该是有客户经理跟 ...
- 我瞅瞅源码系列之---drf
我瞅瞅源码系列之---drf restful规范 从cbv到drf的视图 / 快速了解drf 视图 版本 认证 权限 节流 jwt 持续更新中...
- LOJ#2409. 「THUPC 2017」小 L 的计算题 / Sum(生成函数)
题意 给定一个长为 \(n\) 的序列 \(\{a_i\}\) 对于 \(k \in [1, n]\) 求 \[ f_k = \sum_{i = 1}^{n} a_i^k \pmod {9982443 ...
- git 学习笔记 ---解决冲突
人生不如意之事十之八九,合并分支往往也不是一帆风顺的. 准备新的feature1分支,继续我们的新分支开发: $ git checkout -b feature1 Switched to a new ...
- 【爬坑笔记】c# 如何通过EF Core读写sql server的类似double型字段
=============================================== 2019/8/31_第1次修改 ccb_warlock == ...
- Linux RedHat 7 配置本地 YUM源
尽管RPM安装方法能够帮助用户查询软件相关的依赖关系,但是还是需要安装人员自己来解决,而且有些大型软件可能与数十个程序都有依赖关系,在这种情况下安装软件事件非常痛苦和耗费事件的事情,而Yum软件仓库可 ...
- C#使用Autofac实现控制反转IoC和面向切面编程AOP
Autofac是一个.net下非常优秀,性能非常好的IOC容器(.net下效率最高的容器),加上AOP简直是如虎添翼.Autofac的AOP是通过Castle(也是一个容器)项目的核心部分实现的,名为 ...
- C#中Chart的简单使用(柱状图和折线图)
首先创建一个windows窗体应用程序,在工具箱—>数据中拖拽一个Chart控件,设置ChartArea背景色为黄色,Legend背景色为绿色,三个Series,Name属性分别为1,2,3,添 ...
- js运算符及数据类型转换(二)
1.一元运算符+.-[将其它类型转化为number类型,相当于调用了Number()函数]var num = +('hello') NaN typeof num->numbernum = + ...
- Celery:Daemonization
参考文档:http://docs.celeryproject.org/en/latest/userguide/daemonizing.html#daemonizing