Andrew Ng机器学习课程9-补充
Andrew Ng机器学习课程9-补充
首先要说的还是这个bias-variance trade off,一个hypothesis的generalization error是指的它在样本上的期望误差,这个样本不一定是在training set中的。所以出现了两部分的误差,bias是指的是偏差,未能捕获由数据展示出的结构,underfit,large bias。variance指的是把碰巧出现在训练集数据的pattern给捕获了,但是有限的训练样本并不能反映wider pattern of the relationship between x and y,overfitting,large variance。
PAC(probably approximately correct)理论中几个非常重要的assumptions:assumption of training and testing on the same distribution、assumption of the independently drawn training examples。如果没有这些假设,就无法从理论上证明machine can learn。PAC的含义就是with high probability (the “probably” part), the selected function will have low generalization error (the “approximately correct” part)。
如何选择参数呢?一种方法是最小化训练误差(training error or empirical risk),称之为empirical risk minimization(ERM)。
剩下就是如何在training error和generalization error之间建立连接,能不能给一个upper-bound?
后面通过了hoeffding inquality,得到了这个upper bound,包含三个感兴趣的变量:训练样本数量,训练误差与泛化误差之间设定的距离,以及error的概率,可以通过固定两个变量来bound另一个。可以得到训练样本数量的下限,可以叫做sample complexity。
最后得到一个如下的公式:
这是给出了在一个含有k个hypothesis的set H中,学习算法通过empirical risk minimization给出的h^的泛化误差的upper bound,这个upper bound似乎有两个部分,前面的部分说明的是模型的bias,偏差,即如果找到的hypothesis set中hypothesis个数k比较少,则该项也就比较大,而后一项代表的是variance,则比较大,对应为underfitting,总的来讲也会导致generalization error变大;另一方面,如何k越大,对应的前面的项bias就能做的比较好,而后面的项variance则比较大,对应overfitting。可以这样进行理解bias-variance trade-off.
2015-9-11 艺少
Andrew Ng机器学习课程9-补充的更多相关文章
- Andrew Ng机器学习课程10补充
Andrew Ng机器学习课程10补充 VC dimension 讲到了如果通过最小化训练误差,使用一个具有d个参数的hypothesis class进行学习,为了学习好,一般需要参数d的线性关系个训 ...
- Andrew Ng机器学习课程13
Andrew Ng机器学习课程13 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 引言:主要从一般的角度介绍EM算法及其思想,并推导了EM算法的收敛性.最后 ...
- Andrew Ng机器学习课程12
Andrew Ng机器学习课程12 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 引言:主要讲述了batch learning和online learnin ...
- Andrew Ng机器学习课程笔记(五)之应用机器学习的建议
Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...
- Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)
title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...
- Andrew Ng机器学习课程笔记--汇总
笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...
- Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计
Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.h ...
- Andrew Ng机器学习课程笔记(四)之神经网络
Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...
- Andrew Ng机器学习课程笔记(三)之正则化
Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 ...
- Andrew Ng机器学习课程笔记(二)之逻辑回归
Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 ...
随机推荐
- WinDbg 图形界面功能(二)
1.2.编辑菜单 这个菜单可以提供Windbg里的各功能窗口的可选文本的编辑功能,比如源代码窗口.命令窗口等提供选择.复制.剪切和黏贴等基础编辑功能. 剪切 单击剪切上编辑菜单中,删除所选的任何文本并 ...
- Filebeat在windows下安装使用
一.windows下安装Filebeat 官网下载安装包 解压到指定目录,打开解压后的目录,打开filebeat.yml进行配置. 1.配置为输出到ElasticSearch ①:配置 Filebea ...
- Bzoj 2818: Gcd(莫比乌斯反演)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对 ...
- 洛谷 P1855 榨取kkksc03 题解
P1855 榨取kkksc03 题目描述 洛谷2的团队功能是其他任何oj和工具难以达到的.借助洛谷强大的服务器资源,任何学校都可以在洛谷上零成本的搭建oj并高效率的完成训练计划. 为什么说是搭建oj呢 ...
- nginx+uwsgi+python3+pipenv+mysql+redis部署django程序
1.下载项目 git clone https://github.com/wangyitao/MyBlogs.git 2.进入Myblogs目录 cd MyBlogs 3.创建虚拟环境并且安装依赖 pi ...
- DIJ的优化,和spfa的优化
SPFA和DIJ求最短路的算法的坑点一直是很多的.经常会让人搞不懂. 易错案例: 用重载运算符来排序,如: struct cmp { bool operator ()(int x, int y) co ...
- [golang]golang 汇编
https://lrita.github.io/2017/12/12/golang-asm/#why 在某些场景下,我们需要进行一些特殊优化,因此我们可能需要用到golang汇编,golang汇编源于 ...
- redis应用场景,缓存的各种问题
缓存 redis还有另外一个重要的应用领域——缓存 引用来自网友的图解释缓存在架构中的位置 默认情况下,我们的服务架构如下图,客户端请求service,然后service去读取mysql数据库 问题存 ...
- ubuntu之路——day8.1 深度学习优化算法之mini-batch梯度下降法
所谓Mini-batch梯度下降法就是划分训练集和测试集为等分的数个子集,比如原来有500W个样本,将其划分为5000个baby batch,每个子集中有1000个样本,然后每次对一个mini-bat ...
- Python将多张图片进行合并拼接
import PIL.Image as Image import os IMAGES_PATH = r'D:\pics22223\\' # 图片集地址 IMAGES_FORMAT = ['.jpg', ...