A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 7 x 3 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right

Example 2:

Input: m = 7, n = 3
Output: 28

解题思路:

Climbing Stairs二维版。计算解个数的题多半是用DP。而这两题状态也非常显然,dp[i][j]表示从起点到位置(i, j)的路径总数。DP题目定义好状态后,接下去有两个任务:找通项公式,以及确定计算的方向。
1. 由于只能向右和左走,所以对于(i, j)来说,只能从左边或上边的格子走下来:
dp[i][j] = dp[i-1][j] + dp[i][j-1]
2. 对于网格最上边和最左边,则只能从起点出发直线走到,dp[0][j] = dp[i][0] = 1
3. 计算方向从上到下,从左到右即可。可以用滚动数组实现。
 
Java Solution 1:
class Solution {
public int uniquePaths(int m, int n) {
if (m == 0 || n == 0) {
return 1;
} int[][] dp = new int[m][n];
for (int i = 0; i < m; i++) {
dp[i][0] = 1;
}
for (int i = 0; i < n; i++) {
dp[0][i] = 1;
} for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
}

Java Solution 2:

class Solution {
public int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
int i, j;
for (i = 0; i < m; ++i) {
for (j = 0; j < n; ++ j) {
if (i == 0 || j == 0) {
dp[i][j] = 1;
}
else {
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
}
return dp[m-1][n-1];
}
}

CPP:

class Solution {
public:
/**
* @param n, m: positive integer (1 <= n ,m <= 100)
* @return an integer
*/
int uniquePaths(int m, int n) {
// wirte your code here
vector<vector<int> > f(m, vector<int>(n)); for(int i = 0; i < n; i++)
f[0][i] = 1; for(int i = 0; i < m; i++)
f[i][0] = 1; for(int i = 1; i < m; i++)
for(int j = 1; j < n; j++)
f[i][j] = f[i-1][j] + f[i][j-1]; return f[m-1][n-1];
}
};

Python:

class Solution(object):
def uniquePaths(self, m, n):
dp = [[0] * n for i in xrange(m)]
for i in xrange(m):
for j in xrange(n):
if i == 0 or j == 0:
dp[i][j] = 1
else:
dp[i][j] = dp[i - 1][j] + dp[i][j - 1] return dp[m -1][n - 1]  

Python: Time: O(m * n) Space: O(m + n)

class Solution:
# @return an integer
def uniquePaths(self, m, n):
if m < n:
return self.uniquePaths(n, m)
ways = [1] * n for i in xrange(1, m):
for j in xrange(1, n):
ways[j] += ways[j - 1] return ways[n - 1] 

Python:

class Solution:
# @return an integer
def c(self, m, n):
mp = {}
for i in range(m):
for j in range(n):
if(i == 0 or j == 0):
mp[(i, j)] = 1
else:
mp[(i, j)] = mp[(i - 1, j)] + mp[(i, j - 1)]
return mp[(m - 1, n - 1)] def uniquePaths(self, m, n):
return self.c(m, n)

Python: wo

class Solution(object):
def uniquePaths(self, m, n):
"""
:type m: int
:type n: int
:rtype: int
"""
dp = [[0] * n for i in xrange(m)] #  m, n不能反了
for i in xrange(m):
for j in xrange(n):
if i == 0 and j == 0:
dp[i][j] = 1
elif i == 0:
dp[i][j] = dp[i][j-1]
elif j == 0:
dp[i][j] = dp[i-1][j]
else:
dp[i][j] = dp[i-1][j] + dp[i][j-1] return dp[-1][-1]  

JavaScript:

/**
* @param m: positive integer (1 <= m <= 100)
* @param n: positive integer (1 <= n <= 100)
* @return: An integer
*/
const uniquePaths = function (m, n) {
var f, i, j;
f = new Array(m);
for (i = 0; i < m; i++) f[i] = new Array(n);
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
if (i === 0 || j === 0) {
f[i][j] = 1;
} else {
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
}
return f[m - 1][n - 1];
}

   

 

  

  

[LeetCode] 62. Unique Paths 唯一路径的更多相关文章

  1. LeetCode 62. Unique Paths不同路径 (C++/Java)

    题目: A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). ...

  2. [leetcode]62. Unique Paths 不同路径

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  3. leetcode 62. Unique Paths 、63. Unique Paths II

    62. Unique Paths class Solution { public: int uniquePaths(int m, int n) { || n <= ) ; vector<v ...

  4. [LeetCode] 62. Unique Paths 不同的路径

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  5. LeetCode 62. Unique Paths(所有不同的路径)

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  6. [leetcode] 62 Unique Paths (Medium)

    原题链接 字母题 : unique paths Ⅱ 思路: dp[i][j]保存走到第i,j格共有几种走法. 因为只能走→或者↓,所以边界条件dp[0][j]+=dp[0][j-1] 同时容易得出递推 ...

  7. LeetCode: 62. Unique Paths(Medium)

    1. 原题链接 https://leetcode.com/problems/unique-paths/description/ 2. 题目要求 给定一个m*n的棋盘,从左上角的格子开始移动,每次只能向 ...

  8. 62. Unique Paths不同路径

    网址:https://leetcode.com/problems/unique-paths/ 第一思路是动态规划 通过观察,每一个格子的路线数等于相邻的左方格子的路线数加上上方格子的路线数 于是我们就 ...

  9. LeetCode 63. Unique Paths II不同路径 II (C++/Java)

    题目: A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). ...

随机推荐

  1. Jmeter连接mysql,如何用delete、update、insert真正删除、更改、插入数据库里的数据;

    1.如下图,当插入数据的时候如图对应填写,查询数据的时候上面插入的那条数据就会显示,但是如果不执行下图的提交数据:到数据库里查的时候,插入的这条数据实际上并没有插入成功: . 结果:如果没有提交数据, ...

  2. WinForm 捕获异常 Application.ThreadException + AppDomain.CurrentDomain.UnhandledException

     WinForm 捕获未处理的异常,可以使用Application.ThreadException 和AppDomain.CurrentDomain.UnhandledException事件 WinF ...

  3. R笔记整理(持续更新中)

    1. 安装R包 install.packages("ggplot2") #注意留意在包的名称外有引号!!! library(ggplot2) #在加载包的时候,则不需要在包的名称外 ...

  4. Eclipse搭建maven web项目

    最近在做做一个小实验,搭建ssm框架,要求使用maven来统一管理jar包,接下来就看如何建立maven项目,首先必须有要有相应的开发环境:JDK和maven,以及配置tomcat. 开发环境搭建可以 ...

  5. faster-rcnn系列原理介绍及概念讲解

    faster-rcnn系列原理介绍及概念讲解 faster-rcnn系列原理介绍及概念讲解2 转:作者:马塔 链接:https://www.zhihu.com/question/42205480/an ...

  6. node 日志 log4js 错误日志记录

    SET DEBUG=mylog:* & npm start 原文出处:http://blog.fens.me/nodejs-log4js/ 1. 默认的控制台输出 我们使用express框架时 ...

  7. Wideband Direction of Arrival Estimation Based on Multiple Virtual Extension Arrays

    基于多重虚拟扩展阵列的宽带信号DOA估计[1]. 宽带DOA估计是阵列信号处理领域的一个重要研究方向.在DOAs估计的实际应用中,信号总是会被噪声破坏,在某些情况下,源信号的数量大于传感器的数量,因此 ...

  8. LOJ P10004 智力大冲浪 题解

    每日一题 day37 打卡 Analysis 经典的带限期和罚款的单位时间任务调度问题 将 val 从大到小排序,优先处理罚款多的,将任务尽量安排在期限之前,并且靠后,如果找不到,则放在最后面 #in ...

  9. WinDbg常用命令系列---内存数据显示和对应符号显示d*s(dds、dps、dqs)

    命令dds, dps,  dqs显示给定范围内的内存内容.假定该内存是符号表中的一系列地址.相应的符号也会显示出来. dds [Options] [Range] dqs [Options] [Rang ...

  10. CTF入门(一)

    ctf入门指南 如何入门?如何组队? capture the flag 夺旗比赛 类型: Web密码学pwn 程序的逻辑分析,漏洞利用windows.linux.小型机等misc 杂项,隐写,数据还原 ...