A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 7 x 3 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right

Example 2:

Input: m = 7, n = 3
Output: 28

解题思路:

Climbing Stairs二维版。计算解个数的题多半是用DP。而这两题状态也非常显然,dp[i][j]表示从起点到位置(i, j)的路径总数。DP题目定义好状态后,接下去有两个任务:找通项公式,以及确定计算的方向。
1. 由于只能向右和左走,所以对于(i, j)来说,只能从左边或上边的格子走下来:
dp[i][j] = dp[i-1][j] + dp[i][j-1]
2. 对于网格最上边和最左边,则只能从起点出发直线走到,dp[0][j] = dp[i][0] = 1
3. 计算方向从上到下,从左到右即可。可以用滚动数组实现。
 
Java Solution 1:
class Solution {
public int uniquePaths(int m, int n) {
if (m == 0 || n == 0) {
return 1;
} int[][] dp = new int[m][n];
for (int i = 0; i < m; i++) {
dp[i][0] = 1;
}
for (int i = 0; i < n; i++) {
dp[0][i] = 1;
} for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
}

Java Solution 2:

class Solution {
public int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
int i, j;
for (i = 0; i < m; ++i) {
for (j = 0; j < n; ++ j) {
if (i == 0 || j == 0) {
dp[i][j] = 1;
}
else {
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
}
return dp[m-1][n-1];
}
}

CPP:

class Solution {
public:
/**
* @param n, m: positive integer (1 <= n ,m <= 100)
* @return an integer
*/
int uniquePaths(int m, int n) {
// wirte your code here
vector<vector<int> > f(m, vector<int>(n)); for(int i = 0; i < n; i++)
f[0][i] = 1; for(int i = 0; i < m; i++)
f[i][0] = 1; for(int i = 1; i < m; i++)
for(int j = 1; j < n; j++)
f[i][j] = f[i-1][j] + f[i][j-1]; return f[m-1][n-1];
}
};

Python:

class Solution(object):
def uniquePaths(self, m, n):
dp = [[0] * n for i in xrange(m)]
for i in xrange(m):
for j in xrange(n):
if i == 0 or j == 0:
dp[i][j] = 1
else:
dp[i][j] = dp[i - 1][j] + dp[i][j - 1] return dp[m -1][n - 1]  

Python: Time: O(m * n) Space: O(m + n)

class Solution:
# @return an integer
def uniquePaths(self, m, n):
if m < n:
return self.uniquePaths(n, m)
ways = [1] * n for i in xrange(1, m):
for j in xrange(1, n):
ways[j] += ways[j - 1] return ways[n - 1] 

Python:

class Solution:
# @return an integer
def c(self, m, n):
mp = {}
for i in range(m):
for j in range(n):
if(i == 0 or j == 0):
mp[(i, j)] = 1
else:
mp[(i, j)] = mp[(i - 1, j)] + mp[(i, j - 1)]
return mp[(m - 1, n - 1)] def uniquePaths(self, m, n):
return self.c(m, n)

Python: wo

class Solution(object):
def uniquePaths(self, m, n):
"""
:type m: int
:type n: int
:rtype: int
"""
dp = [[0] * n for i in xrange(m)] #  m, n不能反了
for i in xrange(m):
for j in xrange(n):
if i == 0 and j == 0:
dp[i][j] = 1
elif i == 0:
dp[i][j] = dp[i][j-1]
elif j == 0:
dp[i][j] = dp[i-1][j]
else:
dp[i][j] = dp[i-1][j] + dp[i][j-1] return dp[-1][-1]  

JavaScript:

/**
* @param m: positive integer (1 <= m <= 100)
* @param n: positive integer (1 <= n <= 100)
* @return: An integer
*/
const uniquePaths = function (m, n) {
var f, i, j;
f = new Array(m);
for (i = 0; i < m; i++) f[i] = new Array(n);
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
if (i === 0 || j === 0) {
f[i][j] = 1;
} else {
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
}
return f[m - 1][n - 1];
}

   

 

  

  

[LeetCode] 62. Unique Paths 唯一路径的更多相关文章

  1. LeetCode 62. Unique Paths不同路径 (C++/Java)

    题目: A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). ...

  2. [leetcode]62. Unique Paths 不同路径

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  3. leetcode 62. Unique Paths 、63. Unique Paths II

    62. Unique Paths class Solution { public: int uniquePaths(int m, int n) { || n <= ) ; vector<v ...

  4. [LeetCode] 62. Unique Paths 不同的路径

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  5. LeetCode 62. Unique Paths(所有不同的路径)

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  6. [leetcode] 62 Unique Paths (Medium)

    原题链接 字母题 : unique paths Ⅱ 思路: dp[i][j]保存走到第i,j格共有几种走法. 因为只能走→或者↓,所以边界条件dp[0][j]+=dp[0][j-1] 同时容易得出递推 ...

  7. LeetCode: 62. Unique Paths(Medium)

    1. 原题链接 https://leetcode.com/problems/unique-paths/description/ 2. 题目要求 给定一个m*n的棋盘,从左上角的格子开始移动,每次只能向 ...

  8. 62. Unique Paths不同路径

    网址:https://leetcode.com/problems/unique-paths/ 第一思路是动态规划 通过观察,每一个格子的路线数等于相邻的左方格子的路线数加上上方格子的路线数 于是我们就 ...

  9. LeetCode 63. Unique Paths II不同路径 II (C++/Java)

    题目: A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). ...

随机推荐

  1. bat echo 每行不同的颜色

    bat echo 每行不同的颜色 先看代码: @echo off SETLOCAL EnableDelayedExpansion for /F "tokens=1,2 delims=#&qu ...

  2. 【Selenium-WebDriver实战篇】selenium之使用Tess4J进行验证码图片识别内容

    ==================================================================================================== ...

  3. ACM-ICPC 2018 南京赛区现场赛 K. Kangaroo Puzzle (思维+构造)

    题目链接:https://codeforc.es/gym/101981/attachments 题意:在 n * m 的平面上有若干个袋鼠和墙(1为袋鼠,0为墙),每次可以把所有袋鼠整体往一个方向移动 ...

  4. JS获取本周、本季度、本月、上月、本年的开始日期、结束日期

    /** * 获取本周.本季度.本月.上月的开始日期.结束日期 */ var now = new Date(); //当前日期  var nowDayOfWeek = now.getDay(); //今 ...

  5. 基于VS2017+ROS的ROSOnWindows开坑之旅

    前面尝试了很多算法之后,得先找个能用的环境跑起来试试,于是决定尝试下ROS环境,但是我一直没有尝试Windows版也是因为这个原因,坑太多了,不过现在找到了微软IoT移植的ROSOnWindows,并 ...

  6. 思科ASA对象组NAT

    ACL对象组NAT配置 ciscoasa#conf t ciscoasa(config)#hostname ASA ASA(config)#domain-name asa.com ASA(config ...

  7. 《三体》刘慈欣英文演讲:说好的星辰大海你却只给了我Facebook

    美国当地时间2018日11月8日,著名科幻作家刘慈欣被授予2018年度克拉克想象力贡献社会奖(Clarke Award for Imagination in Service to Society),表 ...

  8. php之大文件分段上传、断点续传

    前段时间做视频上传业务,通过网页上传视频到服务器. 视频大小 小则几十M,大则 1G+,以一般的HTTP请求发送数据的方式的话,会遇到的问题:1,文件过大,超出服务端的请求大小限制:2,请求时间过长, ...

  9. 【loj2341】【WC2018】即时战略

    题目 交互题: 一开始所有点都是黑的,你需要把所有点变白: explore(u,v)会将u到v路径上的第二个点变白: 一开始只有1号点是白色的,你需要让所有点变白: 对于一条链次数限制\(O(n+lo ...

  10. 【字符串】后缀数组SA

    后缀数组 概念 实际上就是将一个字符串的所有后缀按照字典序排序 得到了两个数组 \(sa[i]\) 和 \(rk[i]\),其中 \(sa[i]\) 表示排名为 i 的后缀,\(rk[i]\) 表示后 ...