题目描述(LeetCode)

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。

示例 1:

输入: [,,,]
输出:
解释: 偷窃 号房屋 (金额 = ) ,然后偷窃 号房屋 (金额 = )。
  偷窃到的最高金额 = + = 。

示例 2:

输入: [,,,,]
输出:
解释: 偷窃 号房屋 (金额 = ), 偷窃 号房屋 (金额 = ),接着偷窃 号房屋 (金额 = )。
  偷窃到的最高金额 = + + = 。

题目讲解

很多人拿到上面的意思,可能还是没有理解透彻,讲解一下思路:

  • 标签: 动态规划
  • 动态规划方程: dp[n] = MAX( dp[n-1], dp[n-2] + num )
  • 由于不可以在相邻的房屋闯入,所以在当前位置n房屋可盗窃的最大值,要么就是 n-1 房屋可盗窃的最大值,要么就是 n-2 房屋可盗窃的最大值加上当前房屋的值,二者之间取最大值
  • 举例说明: 1号房间可盗窃的最大值为3,即为dp[1] = 3, 2号房间可盗窃最大值为4,即为dp[2] = 4, 3号公寓自身为2,即为num=2,那么 dp[3] = MAX( dp[2], dp[1] + num ) = MAX(4, 3+2) = 5,3 号房间可盗窃最大值为 5
  • 时间复杂度为: O(n), n为数组长度

下面我们通过图解,通过例子[3,1,2,4]来讲解:

2.1

上面代表是举出例子,3,1,2,4,下面的代表是dp函数,也就是前面相加之和记为dp

开始dp[0] = 0,dp[1] = num[0]= 3

1/5

2.2

dp[0] = 0, dp[1] = 3, dp[i] = MAX(dp[i - 1], dp[i - 2] + num[i - 1] )---->dp[0],是从0开始

dp[2] = MAX(dp[1], dp[0] + num[i]) = MAX(3, 0 + 1) = 3

所以dp[2] = 3

2.3

dp[0] = 0, dp[1] = 3, dp[i] = MAX(dp[i - 1], dp[i - 2] + num[i - 1] )---->dp[0],是从0开始

dp[3] = MAX(dp[2], dp[1] + num[2]) = MAX(3, 3 + 2) = 5

所以dp[3] = 5

2.4

dp[0] = 0, dp[1] = 3, dp[i] = MAX(dp[i - 1], dp[i - 2] + num[i - 1] )---->dp[0],是从0开始

dp[4] = MAX(dp[3], dp[2] + num[3]) = MAX(5, 3 + 4) = 7

所以dp[4] = 7

题目代码

(1)针对上面的思路分析,下面是java 代码

class Solution {
public int rob(int[] nums) {
int len = nums.length;
if(len == )
return ;
int[] dp = new int[len + ];
dp[] = ;
dp[] = nums[];
for(int i = ; i <= len; i++) {
dp[i] = Math.max(dp[i-], dp[i-] + nums[i-]);
}
return dp[len];
}
}

(2)swift代码如下(可在playground直接运行)

let numsArr: [Int] = [,,,]
var newNumArr = [Int]()
func robs(numArr: [Int]) -> Int {
if numArr.count == {
return
}
  //newNumArr[0] = 0这种写法是错误的,swift数组不允许直接赋值,会造成两个数组同时操作同一块地址空间
newNumArr.append(0)
newNumArr.append(numArr[0])
var fk_1 =
var fk_2 =
for i in ..<(numArr.count + ) {
fk_1 = newNumArr[i - ]
fk_2 = newNumArr[i - ] + numArr[i - ]
let temp = fk_1 > fk_2 ? fk_1 : fk_2
newNumArr.append(temp)
}
return newNumArr[numArr.count] }
let maxRob = robs(numArr: numsArr)
print(maxRob)

输出结果是7,和上面一样!

上面是打家劫舍的第一版本,后续我们将继续出版其他版本的打家劫舍,欢迎大家关注,谢谢

打家劫舍I的更多相关文章

  1. (leetcode:选择不相邻元素,求和最大问题):打家劫舍(DP:198/213/337)

    题型:从数组中选择不相邻元素,求和最大 (1)对于数组中的每个元素,都存在两种可能性:(1)选择(2)不选择,所以对于这类问题,暴力方法(递归思路)的时间复杂度为:O(2^n): (2)递归思路中往往 ...

  2. leetcode 198 打家劫舍 Python 动态规划

    打家劫舍 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警. 给定 ...

  3. 213 House Robber II 打家劫舍 II

    注意事项: 这是 打家劫舍 的延伸.在上次盗窃完一条街道之后,窃贼又转到了一个新的地方,这样他就不会引起太多注意.这一次,这个地方的所有房屋都围成一圈.这意味着第一个房子是最后一个是紧挨着的.同时,这 ...

  4. Leetcode337. 打家劫舍 III

    Leetcode 337. 打家劫舍 III 在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区.这个地区只有一个入口,我们称之为"根". 除了"根& ...

  5. 【LeetCode】198. 打家劫舍

    打家劫舍 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警. 给定 ...

  6. 打家劫舍II

    题目描述(LeetCode) 你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金.这个地方所有的房屋都围成一圈,这意味着第一个房屋和最后一个房屋是紧挨着的.同时,相邻的房屋装有相互连通的 ...

  7. [LeetCode] 198. 打家劫舍II ☆☆☆(动态规划)

    描述 你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金.这个地方所有的房屋都围成一圈,这意味着第一个房屋和最后一个房屋是紧挨着的.同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的 ...

  8. [LeetCode] 198. 打家劫舍 ☆(动态规划)

    描述 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警. 给定一个 ...

  9. [LeetCode] 213. House Robber II 打家劫舍 II

    Note: This is an extension of House Robber. After robbing those houses on that street, the thief has ...

随机推荐

  1. mysql初始

    数据(data) : -描述事物的符号记录称为数据,符号既可以是数据,文字,图片,声音,语言等,符号都可以经过数字化后存入计算机中 - 计算机中描述一个事物,就需要抽取这一事物的典型特征,组成一条记录 ...

  2. 利用sftp迁移pve虚拟机

    首先在A主机进行虚拟机备份vzdump <vmid>在B主机利用sftp复制备份到A主机cd /var/lib/vz/dump/sftp root@192.168.25.140 回答yes ...

  3. 这个中秋,我用 Java 画了一个月饼!

    栈长代表微信公众号 "Java技术栈" 祝所有粉丝中秋佳节快乐! 为了用一种特殊的方式表达我的心意,去年中秋节,我写了这篇文章: 为了写中秋这篇文章,我学了 20 种编程语言! 没 ...

  4. web程序设计关于我们

    项目名称 福大咸鱼市场 开发团队 项目板块 负责人 美工 黄鸿杰 后端 胡继文 前端 葛家灿 联系方式:1175204449@qq.com

  5. 万恶技术系列笔记-jupyter工作路径和源文件打开方式

    万恶技术系列笔记-jupyter工作路径和源文件打开方式   脚本文件,ipynb的正确打开姿势: ipynb不能直接打开,需要复制到工作路径.例如 10_monkeys_model_1.ipynb ...

  6. CSAGAN的几大重点 - 2

    1.生成器 1)MRU(SketchyGAN) 计算过程为: 与DCGAN[46]和ResNet生成架构的定性和定量比较可以在5.3节中找到.MRU块有两个输入:输入特征图xi和图像I,输出特征图yi ...

  7. Scheduling In Go

    https://www.ardanlabs.com/blog/2018/08/scheduling-in-go-part1.html https://blog.altoros.com/golang-i ...

  8. 设置驱动的方法(Chrome 亲测ok)

    驱动下载地址 http://selenium-release.storage.googleapis.com/index.html package com.selenium.java.webdriver ...

  9. elasticsearch 搜索提示DSL

    1,创建mapping: PUT /news_website { "mappings": { "news" : { "properties" ...

  10. java Random 随机重排

    将一个数组或序列随机重新排列. /** * Created by xc on 2019/11/23 * 随机重排 */ public class Test7_7 { public static voi ...