Codeforces 1262F Wrong Answer on test 233(组合数)
E1:设dp[i][j],表示在第i个位置的当前新状态超过原状态j分的方案数是dp[i][j],那么对于这种情况直接进行转移即可,如果a[i]==b[i]显然k种选择都可以,不影响j,如果不一样,这个位置填了a[i]那么状态从dp[i-1][j+1]转移过来,如果填了b[i]就是dp[i-1][j-1]转移,当然也可以两个都不填,那么剩下一共是k-2种选择,j不变,最后答案将所有超过分数为正数的加起来即可,因此总体复杂度O(nk)。
E2:我们可以从E1的递推式子中发现,新状态超过原状态的方案和原状态超过新状态的方案这两者是等价的问题,那么我们可以进行简单使用总方案数减去分数相同的方案数最后除二就是答案,那么我们可以枚举新状态一共多原状态j分,原状态一共多新状态j分,因为这两者在最后是打平的,这两者在只有在a[i]!=b[i]的时候才会发生超对方一分的情况,那么我们记num为一共有多少个a[i]!=b[i]的情况,然后我们枚举共超过对方i分,那么我们需要从num中挑i次是选择的a,再从剩下的num-i次中选择b,那么还剩下nun-2*i的部分是a[i]!=b[i],但是又不能影响超过的分数,那么只能选既不是a[i]也不是b[i]共k-2中选择,那么乘上(k-2)(num-2*i),最后n-num的部分是a[i]==b[i],对于这部分不论取什么对于两者的贡献是一样的,那么一共有k种选择,所以最后再乘上k(n-num)即可。
O(nk)
// ——By DD_BOND #include<bits/stdc++.h> using namespace std; typedef long long ll; const int MOD=; ll dp[][];
int a[],b[]; int main(void)
{
ios::sync_with_stdio(false); cin.tie(); cout.tie();
ll n,k; cin>>n>>k;
for(int i=;i<=n;i++) cin>>a[i];
for(int i=;i<=n;i++) b[i]=a[i%n+];
dp[][n+]=;
for(int i=;i<=n;i++){
for(int j=;j<=*n+;j++){
if(a[i]==b[i]) dp[i][j]=dp[i-][j]*k%MOD;
else dp[i][j]=((dp[i-][j-]+dp[i-][j+])%MOD+dp[i-][j]*(k-)%MOD)%MOD;
}
}
ll ans=;
for(int i=n+;i<=*n+;i++) ans=(ans+dp[n][i])%MOD;
cout<<ans<<endl;
return ;
}
O(nlogk)
// ——By DD_BOND #include<bits/stdc++.h> using namespace std; typedef long long ll; const int MOD=;
const int MAXN=1e6+; ll qpow(ll a,ll n){ll sum=;while(n){if(n&)sum=sum*a%MOD;a=a*a%MOD;n>>=;}return sum;} int a[MAXN],b[MAXN];
int fac[MAXN],rfac[MAXN],inv[MAXN]; int C(int n,int m){
if(n-m<m) m=n-m;
if(m==) return ;
return 1ll*fac[n]*rfac[m]%MOD*rfac[n-m]%MOD;
} int main(void)
{
ios::sync_with_stdio(false); cin.tie(); cout.tie();
fac[]=rfac[]=inv[]=;
for(int i=;i<MAXN;i++) inv[i]=1ll*(MOD-MOD/i)*inv[MOD%i]%MOD;
for(int i=;i<MAXN;i++) fac[i]=1ll*fac[i-]*i%MOD,rfac[i]=1ll*rfac[i-]*inv[i]%MOD;
int n,k,num=,ans=; cin>>n>>k;
for(int i=;i<=n;i++) cin>>a[i];
if(k==) return cout<<<<endl,;
for(int i=;i<=n;i++)
if(a[i]!=a[i%n+])
num++;
for(int i=;*i<=num;i++) ans=(ans+1ll*C(num,i)*C(num-i,i)%MOD*qpow(k-,num-*i)%MOD*qpow(k,n-num)%MOD)%MOD;
cout<<(qpow(k,n)-ans+MOD)%MOD*inv[]%MOD<<endl;
return ;
}
Codeforces 1262F Wrong Answer on test 233(组合数)的更多相关文章
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) F2. Wrong Answer on test 233 (Hard Version) dp 数学
F2. Wrong Answer on test 233 (Hard Version) Your program fails again. This time it gets "Wrong ...
- Codeforces 785D Anton and School - 2 (组合数相关公式+逆元)
D. Anton and School - 2 time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- CodeForces - 140E:New Year Garland (组合数&&DP)
As Gerald, Alexander, Sergey and Gennady are already busy with the usual New Year chores, Edward has ...
- CodeForces - 367E:Sereja and Intervals(组合数&&DP)
Sereja is interested in intervals of numbers, so he has prepared a problem about intervals for you. ...
- Codeforces 785D Anton and School - 2(组合数)
[题目链接] http://codeforces.com/problemset/problem/785/D [题目大意] 给出一个只包含左右括号的串,请你找出这个串中的一些子序列, 要求满足" ...
- Educational Codeforces Round 80 C. Two Arrays(组合数快速取模)
You are given two integers nn and mm . Calculate the number of pairs of arrays (a,b)(a,b) such that: ...
- codeforces 459C Pashmak and Buses(模拟,组合数A)
题目 跑个案例看看结果就知道了:8 2 3 题目给的数据是 n,k,d 相当于高中数学题:k个人中选择d个人排成一列,有多少种不同的方案数,列出其中n中就可以了. #include<iostre ...
- Codeforces 57C (1-n递增方案数,组合数取模,lucas)
这个题相当于求从1-n的递增方案数,为C(2*n-1,n); 取模要用lucas定理,附上代码: #include<bits/stdc++.h> using namespace std; ...
- 【CF1262F】Wrong Answer on test 233(数学)
题意:给定n道题目,每道题目有k个选项,已知所有正确选项,选对1题得1分 问循环后移一格后总得分s2大于原先总得分s1的方案数 n<=2e5,1<=k<=1e9 思路:特判k=1 e ...
随机推荐
- 解决 Failed to start LSB: Bring up/down networking 问题
我用的是虚拟机,一换网络环境虚拟机的ip就没有了,重启网上就报Failed to start LSB: Bring up/down networking错误.网上查了一圈说什么HWADDR有问题,改了 ...
- Java面试之持久层(10)
91,什么是ORM? 对象关系映射(Object-Relational Mapping,简称ORM)是一种为了解决程序的面向对象模型与数据库的关系模型互不匹配问题的技术: 简单的说,O ...
- vue-router中$route 和 $router
1.1 $route 表示(当前路由信息对象) 表示当前激活的路由的状态信息,包含了当前 URL 解析得到的信息,还有 URL 匹配到的 route records(路由记录).路由信息对象:即$ro ...
- IDEA mapping箭头要怎么样设置哈(Free MyBatis插件)
效果如下图: 当我们点击箭头的时候,会快速切换到我们相关联的类位置,就不用再像以前一样还要去找 而 Free MyBatis是一款让我们操作更加方便的插件,你值得拥有哦~~~ idea 选择 File ...
- XML 验证器
XML 错误会终止您的程序 XML 文档中的错误会终止你的 XML 程序. W3C 的 XML 规范声明:如果 XML 文档存在错误,那么程序就不应当继续处理这个文档.理由是,XML 软件应当轻巧,快 ...
- 删除操作——str.subString(0,str.length()-1)
subString是String的一个方法,格式为: public String substring(int beginIndex, int endIndex) 返回一个新字符串,它是此字符串的一个 ...
- Selenium 元素常用操作方法(键盘和鼠标事件)
一.简单操作 click():点击 send_keys():输入 clear():清空 submit():提交表单 size:返回元素的尺寸 text:获取元素的文本 get_attribute(): ...
- DVWA--upload
文件上传漏洞 0x01了解文件上传漏洞的用处是用来干什么的 什么是文件上传漏洞? 文件上传漏洞是指由于程序员在对用户文件上传部分的控制不足或者处理缺陷,而导致的用户可以越过其本身权限向服务器上上传可执 ...
- [CSP-S模拟测试]:Smooth(数学)
题目传送门(内部题84) 输入格式 两个整数$B,K$ 输出格式 一个整数表示答案 样例 样例输入: 5 100 样例输出: 数据范围与提示 对于$40\%$的数据,保证答案小于$10^7$对于另$2 ...
- 使用Runnable接口创建线程池
步骤: 创建线程池对象创建 Runnable 接口子类对象提交 Runnable 接口子类对象关闭线程池实例: class TaskRunnable implements Runnable{ @Ove ...