E1:设dp[i][j],表示在第i个位置的当前新状态超过原状态j分的方案数是dp[i][j],那么对于这种情况直接进行转移即可,如果a[i]==b[i]显然k种选择都可以,不影响j,如果不一样,这个位置填了a[i]那么状态从dp[i-1][j+1]转移过来,如果填了b[i]就是dp[i-1][j-1]转移,当然也可以两个都不填,那么剩下一共是k-2种选择,j不变,最后答案将所有超过分数为正数的加起来即可,因此总体复杂度O(nk)。

E2:我们可以从E1的递推式子中发现,新状态超过原状态的方案和原状态超过新状态的方案这两者是等价的问题,那么我们可以进行简单使用总方案数减去分数相同的方案数最后除二就是答案,那么我们可以枚举新状态一共多原状态j分,原状态一共多新状态j分,因为这两者在最后是打平的,这两者在只有在a[i]!=b[i]的时候才会发生超对方一分的情况,那么我们记num为一共有多少个a[i]!=b[i]的情况,然后我们枚举共超过对方i分,那么我们需要从num中挑i次是选择的a,再从剩下的num-i次中选择b,那么还剩下nun-2*i的部分是a[i]!=b[i],但是又不能影响超过的分数,那么只能选既不是a[i]也不是b[i]共k-2中选择,那么乘上(k-2)(num-2*i),最后n-num的部分是a[i]==b[i],对于这部分不论取什么对于两者的贡献是一样的,那么一共有k种选择,所以最后再乘上k(n-num)即可。

O(nk)

//      ——By DD_BOND 

#include<bits/stdc++.h>

using namespace std;

typedef long long ll;

const int MOD=;

ll dp[][];
int a[],b[]; int main(void)
{
ios::sync_with_stdio(false); cin.tie(); cout.tie();
ll n,k; cin>>n>>k;
for(int i=;i<=n;i++) cin>>a[i];
for(int i=;i<=n;i++) b[i]=a[i%n+];
dp[][n+]=;
for(int i=;i<=n;i++){
for(int j=;j<=*n+;j++){
if(a[i]==b[i]) dp[i][j]=dp[i-][j]*k%MOD;
else dp[i][j]=((dp[i-][j-]+dp[i-][j+])%MOD+dp[i-][j]*(k-)%MOD)%MOD;
}
}
ll ans=;
for(int i=n+;i<=*n+;i++) ans=(ans+dp[n][i])%MOD;
cout<<ans<<endl;
return ;
}

O(nlogk)

 //      ——By DD_BOND

 #include<bits/stdc++.h>

 using namespace std;

 typedef long long ll;

 const int MOD=;
const int MAXN=1e6+; ll qpow(ll a,ll n){ll sum=;while(n){if(n&)sum=sum*a%MOD;a=a*a%MOD;n>>=;}return sum;} int a[MAXN],b[MAXN];
int fac[MAXN],rfac[MAXN],inv[MAXN]; int C(int n,int m){
if(n-m<m) m=n-m;
if(m==) return ;
return 1ll*fac[n]*rfac[m]%MOD*rfac[n-m]%MOD;
} int main(void)
{
ios::sync_with_stdio(false); cin.tie(); cout.tie();
fac[]=rfac[]=inv[]=;
for(int i=;i<MAXN;i++) inv[i]=1ll*(MOD-MOD/i)*inv[MOD%i]%MOD;
for(int i=;i<MAXN;i++) fac[i]=1ll*fac[i-]*i%MOD,rfac[i]=1ll*rfac[i-]*inv[i]%MOD;
int n,k,num=,ans=; cin>>n>>k;
for(int i=;i<=n;i++) cin>>a[i];
if(k==) return cout<<<<endl,;
for(int i=;i<=n;i++)
if(a[i]!=a[i%n+])
num++;
for(int i=;*i<=num;i++) ans=(ans+1ll*C(num,i)*C(num-i,i)%MOD*qpow(k-,num-*i)%MOD*qpow(k,n-num)%MOD)%MOD;
cout<<(qpow(k,n)-ans+MOD)%MOD*inv[]%MOD<<endl;
return ;
}

Codeforces 1262F Wrong Answer on test 233(组合数)的更多相关文章

  1. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) F2. Wrong Answer on test 233 (Hard Version) dp 数学

    F2. Wrong Answer on test 233 (Hard Version) Your program fails again. This time it gets "Wrong ...

  2. Codeforces 785D Anton and School - 2 (组合数相关公式+逆元)

    D. Anton and School - 2 time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  3. CodeForces - 140E:New Year Garland (组合数&&DP)

    As Gerald, Alexander, Sergey and Gennady are already busy with the usual New Year chores, Edward has ...

  4. CodeForces - 367E:Sereja and Intervals(组合数&&DP)

    Sereja is interested in intervals of numbers, so he has prepared a problem about intervals for you. ...

  5. Codeforces 785D Anton and School - 2(组合数)

    [题目链接] http://codeforces.com/problemset/problem/785/D [题目大意] 给出一个只包含左右括号的串,请你找出这个串中的一些子序列, 要求满足" ...

  6. Educational Codeforces Round 80 C. Two Arrays(组合数快速取模)

    You are given two integers nn and mm . Calculate the number of pairs of arrays (a,b)(a,b) such that: ...

  7. codeforces 459C Pashmak and Buses(模拟,组合数A)

    题目 跑个案例看看结果就知道了:8 2 3 题目给的数据是 n,k,d 相当于高中数学题:k个人中选择d个人排成一列,有多少种不同的方案数,列出其中n中就可以了. #include<iostre ...

  8. Codeforces 57C (1-n递增方案数,组合数取模,lucas)

    这个题相当于求从1-n的递增方案数,为C(2*n-1,n); 取模要用lucas定理,附上代码: #include<bits/stdc++.h> using namespace std; ...

  9. 【CF1262F】Wrong Answer on test 233(数学)

    题意:给定n道题目,每道题目有k个选项,已知所有正确选项,选对1题得1分 问循环后移一格后总得分s2大于原先总得分s1的方案数 n<=2e5,1<=k<=1e9 思路:特判k=1 e ...

随机推荐

  1. mysql jdbcTemplate访问

    String sql = "select * from xxx_photo_info where user_id in (:userIds)"; userIds从dao传过来时必须 ...

  2. 01-scrapy框架

    1.Scrapy图例: Scrapy Engine(引擎): 负责Spider.ItemPipeline.Downloader.Scheduler中间的通讯,信号.数据传递等. Scheduler(调 ...

  3. MySQL_DQL操作

    DQL(Data Query Language)简单的来说就是数据的查询语言. 1.最简单的查询(显示表中的所有信息) 语法: select * from 表名; 2.普通查询 语法: select ...

  4. Katalon Studio用迅雷快速下载历史版本方法

    一.下载说明 官网正版--历史版本下载地址: https://github.com/katalon-studio/katalon-studio/releases 说明1:这里需要注册账户才可以下载,但 ...

  5. sqli-labs(18)

    开始挑战第十八关(Header Injection - Uagent field - Error based) 常见的HTTP注入点产生位置为[Referer].[X-Forwarded-For].[ ...

  6. shift、unshift、 push、pop用法

    shift()定义和用法 shift() 方法用于把数组的第一个元素从其中删除,并返回第一个元素的值. 语法:arrayObject.shift() 返回值:数组原来的第一个元素的值. 说明:如果数组 ...

  7. Cordova-在现有iOS工程自动化接入Cordova插件

    模拟Cordova插件命令 自己编写脚本,了解cordova添加插件做了哪些事情. 上一篇文章了解到,web与native的交互主要是cordova.js中的exec方法调用,触发交互事件.UIWeb ...

  8. learning webrtc 使用node.js

    第二章 有使用node.js创建静态服务器的步骤 不过不够详细 下面以Windows为例 1.到官方网站下载安装包 然后安装 2.用管理员权限启动命令行 3.命令行窗口执行npm config set ...

  9. maven 改本地仓库

    Maven缺省的本地仓库路径为${user.home}/.m2/repository. 本地仓库是远程仓库的一个缓冲和子集,当你构建Maven项目的时候,首先会从本地仓库查找资源,如果没有,那么Mav ...

  10. Java8 新特性之集合操作Stream

    Java8 新特性之集合操作Stream Stream简介 Java 8引入了全新的Stream API.这里的Stream和I/O流不同,它更像具有Iterable的集合类,但行为和集合类又有所不同 ...