一、概念

DBSCAN是一种基于密度的聚类算法,DBSCAN需要两个参数,一个是以P为中心的邻域半径;另一个是以P为中心的邻域内的最低门限点的数量,即密度。

优点:

1、不需要提前设定分类簇数量,分类结果更合理;

2、可以有效的过滤干扰。

缺点:

1、对高维数据处理效果较差;

2、算法复杂度较高,资源消耗大于K-means。

二、计算

1、默认使用第一个点作为初始中心;

2、通过计算点到中心的欧氏距离和领域半径对比,小于则是邻域点;

3、计算完所有点,统计邻域内点数量,小于于最低门限点数量则为噪声;

4、循环统计各个点的邻域点数,只要一直大于最低门限点数量,则一直向外扩展,直到不再大于。

5、一个簇扩展完成,会从剩下的点中重复上述操作,直到所有点都被遍历。

三、实现

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt cs = ['black', 'blue', 'brown', 'red', 'yellow', 'green'] class NpCluster(object):
def __init__(self):
self.key = []
self.value = [] def append(self, data):
if str(data) in self.key:
return
self.key.append(str(data))
self.value.append(data) def exist(self, data):
if str(data) in self.key:
return True
return False def __len__(self):
return len(self.value) def __iter__(self):
self.times = 0
return self def __next__(self):
try:
ret = self.value[self.times]
self.times += 1
return ret
except IndexError:
raise StopIteration() def create_sample():
np.random.seed(10) # 随机数种子,保证随机数生成的顺序一样
n_dim = 2
num = 100
a = 3 + 5 * np.random.randn(num, n_dim)
b = 30 + 5 * np.random.randn(num, n_dim)
c = 60 + 10 * np.random.randn(1, n_dim)
data_mat = np.concatenate((np.concatenate((a, b)), c))
ay = np.zeros(num)
by = np.ones(num)
label = np.concatenate((ay, by))
return {'data_mat': list(data_mat), 'label': label} def region_query(dataset, center_point, eps):
result = NpCluster()
for point in dataset:
if np.sqrt(sum(np.power(point - center_point, 2))) <= eps:
result.append(point)
return result def dbscan(dataset, eps, min_pts):
noise = NpCluster()
visited = NpCluster()
clusters = []
for point in dataset:
cluster = NpCluster()
if not visited.exist(point):
visited.append(point)
neighbors = region_query(dataset, point, eps)
if len(neighbors) < min_pts:
noise.append(point)
else:
cluster.append(point)
expand_cluster(visited, dataset, neighbors, cluster, eps, min_pts)
clusters.append(cluster)
for data in clusters:
print(data.value)
plot_data(np.mat(data.value), cs[clusters.index(data)])
if noise.value:
plot_data(np.mat(noise.value), 'green')
plt.show() def plot_data(samples, color, plot_type='o'):
plt.plot(samples[:, 0], samples[:, 1], plot_type, markerfacecolor=color, markersize=14) def expand_cluster(visited, dataset, neighbors, cluster, eps, min_pts):
for point in neighbors:
if not visited.exist(point):
visited.append(point)
point_neighbors = region_query(dataset, point, eps)
if len(point_neighbors) >= min_pts:
for expand_point in point_neighbors:
if not neighbors.exist(expand_point):
neighbors.append(expand_point)
if not cluster.exist(point):
cluster.append(point) init_data = create_sample()
dbscan(init_data['data_mat'], 10, 3)

聚类结果:

可以看到,点被很好的聚类为两个簇,右上角是噪声。

机器学习聚类算法之DBSCAN的更多相关文章

  1. 机器学习 - 算法 - 聚类算法 K-MEANS / DBSCAN算法

    聚类算法 概述 无监督问题 手中无标签 聚类 将相似的东西分到一组 难点 如何 评估, 如何 调参 基本概念 要得到的簇的个数  - 需要指定 K 值 质心 - 均值, 即向量各维度取平均 距离的度量 ...

  2. 机器学习聚类算法之K-means

    一.概念 K-means是一种典型的聚类算法,它是基于距离的,是一种无监督的机器学习算法. K-means需要提前设置聚类数量,我们称之为簇,还要为之设置初始质心. 缺点: 1.循环计算点到质心的距离 ...

  3. Standford机器学习 聚类算法(clustering)和非监督学习(unsupervised Learning)

    聚类算法是一类非监督学习算法,在有监督学习中,学习的目标是要在两类样本中找出他们的分界,训练数据是给定标签的,要么属于正类要么属于负类.而非监督学习,它的目的是在一个没有标签的数据集中找出这个数据集的 ...

  4. 【Python机器学习实战】聚类算法(1)——K-Means聚类

    实战部分主要针对某一具体算法对其原理进行较为详细的介绍,然后进行简单地实现(可能对算法性能考虑欠缺),这一部分主要介绍一些常见的一些聚类算法. K-means聚类算法 0.聚类算法算法简介 聚类算法算 ...

  5. 【转】常用聚类算法(一) DBSCAN算法

    原文链接:http://www.cnblogs.com/chaosimple/p/3164775.html#undefined 1.DBSCAN简介 DBSCAN(Density-Based Spat ...

  6. 常用聚类算法(一) DBSCAN算法

    1.DBSCAN简介 DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种基于密度 ...

  7. 关于k-means聚类算法的matlab实现

    在数据挖掘中聚类和分类的原理被广泛的应用. 聚类即无监督的学习. 分类即有监督的学习. 通俗一点的讲就是:聚类之前是未知样本的分类.而是根据样本本身的相似性进行划分为相似的类簇.而分类 是已知样本分类 ...

  8. 简单易学的机器学习算法—基于密度的聚类算法DBSCAN

    简单易学的机器学习算法-基于密度的聚类算法DBSCAN 一.基于密度的聚类算法的概述 我想了解下基于密度的聚类算法,熟悉下基于密度的聚类算法与基于距离的聚类算法,如K-Means算法之间的区别.    ...

  9. 简单易学的机器学习算法——基于密度的聚类算法DBSCAN

    一.基于密度的聚类算法的概述     最近在Science上的一篇基于密度的聚类算法<Clustering by fast search and find of density peaks> ...

随机推荐

  1. vue问题一:触发接口

    //在script中先引用 import api from './../../api/index' //vue文件方法中 写 del(index, row) { let self=this; // 传 ...

  2. Other | 十招教你找到海量PPT模板

    转载自:https://www.douban.com/note/330962457/ 问:PPT模板是什么含义? 答: 先假定你们要的是这种网上到处泛滥成灾的主题PPT吧,下面请耐心看到最后,秋叶老师 ...

  3. Android 的四大组件都需要在清单文件中注册吗?

    Activity . Service . ContentProvider 如 果 要 使 用 则 必 须 在 AndroidManifest.xml 中 进 行 注 册 , 而BroadcastRec ...

  4. IP冲突如何把冲突的IP挤下去

    把冲突IP挤下去的方法: ①进入网络和共享中心>本地连接>禁用. ②进入网络和共享中心>更改适配器设置>双击被禁用的连接,自动重新连接即可.

  5. fixture作用范围

    ixture里面有个scope参数可以控制fixture的作用范围:session > module > class > function fixture(scope="f ...

  6. postMessage——解决跨域、跨窗口消息传递

    参考资料1:[http://www.cnblogs.com/dolphinX/p/3464056.html] 参考资料2:[https://developer.mozilla.org/en-US/do ...

  7. unity 角色换装

    unity角色换装的关键是更改角色部位上的物体的SkinnedMeshRenderer组件的属性: 更改mesh:mesh决定了部位的物体的外形,是主要的数据. 刷新骨骼:同一个部位下,不同的mesh ...

  8. BeautifulSoup解析豆瓣即将上映的电影信息

    工欲善其事,必先利其器,我们首先得了解beautifulsoup的使用,这其实是一个比较简单的东西   BeautifulSoup的基本使用语法规则 .find() 使用示例 soup.find('a ...

  9. oop理论

    三大特性: 封装:把对象的属性和行为独立的一个整体,并尽可能的隐藏对象内部实现细节.增加安全性. 继承:从已有的类中派生出新的类,称为子类,子类继承父类的属性和行为,并能根据自己的需求扩展出新的行为. ...

  10. mysql中索引类型

    mysql索引类型normal,unique,full text的是什么? normal:表示普通索引 unique:表示唯一的,不允许重复的索引,如果该字段信息保证不会重复例如身份证号用作索引时,可 ...