Luogu P4438 [HNOI/AHOI2018]道路
题目
注意到\(n\)不大并且深度不大。
记\((u,ls_u)\)为\(L\)边,\((u,rs_u)\)为\(R\)边。
所以我们可以设\(f_{p,i,j}\)表示从根到\(p\)有\(i\)条未标记的\(L\)边和\(j\)条未标记的\(R\)边的最小答案。
对于叶子结点,枚举\(i,j\)套题目给的公式。
对非叶子节点,\(f_{p,i,j}=\min(f_{ls_p,i+1,j}+f_{rs_p,i,j+1},f_{ls_p,i,j+1}+f_{rs_p,i+1,j})\)。
注意到我们是在二叉树上dfs,所以对于一个点,我们计算完其儿子后,其儿子的\(f\)就不需要再用了。这个可以省空间。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=40007;
int n,a[N],b[N],c[N],ls[N],rs[N];ll f[81][41][41];
int read(){int x;scanf("%d",&x);return x;}
int get(){int x=read();return x>0? x:n-x;}
void dfs(int u,int k,int l,int r)
{
if(!ls[u])
{
for(int i=0,j;i<=l;++i) for(j=0;j<=r;++j) f[k][i][j]=1ll*c[u]*(a[u]+i)*(b[u]+j);
return ;
}
dfs(ls[u],k+1,l+1,r),dfs(rs[u],k+2,l,r+1);
for(int i=0,j;i<=l;++i) for(j=0;j<=r;++j) f[k][i][j]=min(f[k+1][i+1][j]+f[k+2][i][j],f[k+1][i][j]+f[k+2][i][j+1]);
}
int main()
{
n=read();int i;
for(i=1;i<n;++i) ls[i]=get(),rs[i]=get();
for(i=1;i<=n;++i) a[i+n]=read(),b[i+n]=read(),c[i+n]=read();
dfs(1,1,0,0),cout<<f[1][0][0];
}
Luogu P4438 [HNOI/AHOI2018]道路的更多相关文章
- 【题解】Luogu P4438 [HNOI/AHOI2018]道路
原题传送门 实际就是一道简单的树形dp 设f[u][i][j]表示从根结点到结点u经过i条未翻修公路,j条未翻修铁路的贡献最小值 边界条件:f[leaf][i][j]=(A+i)(B+j)C (题目上 ...
- 洛谷P4438 [HNOI/AHOI2018]道路(dp)
题意 题目链接 Sol 每当出题人想起他出的HNOI 2018 Day2T3,他都会激动的拍打着轮椅 读题比做题用时长系列... \(f[i][a][b]\)表示从根到\(i\)的路径上,有\(a\) ...
- P4438 [HNOI/AHOI2018]道路
辣稽题目 毁我青春 耗我钱财. 设\(f[x][i][j]\)为从1号点走到x点经过i条公路j条铁路,子树的最小代价. \(f[leaf][i][j]=(A+i)(B+j)C\) \(f[x][i][ ...
- Luogu 4438 [HNOI/AHOI2018]道路
$dp$. 这道题最关键的是这句话: 跳出思维局限大胆设状态,设$f_{x, i, j}$表示从$x$到根要经过$i$条公路,$j$条铁路的代价,那么对于一个叶子结点,有$f_{x, i, j} = ...
- 【题解】Luogu P4436 [HNOI/AHOI2018]游戏
原题传送门 \(n^2\)过百万在HNOI/AHOI2018中真的成功了qwqwq 先将没门分格的地方连起来,枚举每一个块,看向左向右最多能走多远,最坏复杂度\(O(n^2)\),但出题人竟然没卡(建 ...
- BZOJ5290 & 洛谷4438:[HNOI/AHOI2018]道路——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5290 https://www.luogu.org/problemnew/show/P4438 的确 ...
- [HNOI/AHOI2018]道路
Description: W 国的交通呈一棵树的形状.W 国一共有\(n - 1\)个城市和\(n\)个乡村,其中城市从\(1\)到\(n - 1\) 编号,乡村从\(1\)到\(n\)编号,且\(1 ...
- luogu P4437 [HNOI/AHOI2018]排列
luogu 问题本质是把\(a_i\)作为\(i\)的父亲,然后如果有环就不合法,否则每次要取数,要满足取之前他的父亲都被取过(父亲为0可以直接取),求最大价值 贪心想法显然是要把权值大的尽量放在后面 ...
- 【题解】 [HNOI/AHOI2018]道路 (动态规划)
懒得复制,戳我戳我 Solution: \(dp[i][j][k]\)以\(i\)为子树根节点,到根节点中有\(j\)条公路没修,\(k\)条铁路没修,存子树不便利和 \(dp[i][j][k]=mi ...
随机推荐
- luogu 2993 [FJOI2014]最短路径树问题 Dijkstra+点分治
挺简单的,但是给人一种把两个问题强行弄到一起的感觉. 十分不好写. Code: #include <queue> #include <cstdio> #include < ...
- TTTTTTTTTTTTTTTTTT hdu 1800 字符串哈希 裸题
题意:意思是有若干个飞行员,需要在扫帚上练习飞行,每个飞行员具有不同的等级,且等级高的飞行员可以当等级低的飞行员的老师,且每个飞行员至多有且只有一个老师和学生.具有老师和学生关系的飞行员可以在同一把扫 ...
- 【转】HDU-6035-Colorful Tree
转自http://blog.csdn.net/Bahuia/article/details/76141574 题意: 题目链接:http://acm.hdu.edu.cn/showproblem.ph ...
- Express + Mongoose 极简入门
今天尝试使用express + mongoose,构建了一个简单的Hello world,实现以下功能: 定义mongodb使用的Schema,一个User 访问/输出Hello world 访问/i ...
- Mac开发如何处理键盘事件
Mac上输入与手机输入的不同是,Mac需要处理更多的键盘交互,因为Mac上的键盘输入会有多种快捷键组合. 代理方法处理 NSTextField #pragma mark - NSTextFieldDe ...
- 文件和Stream
I/O和文件 输入/输出(I/O)就是在内存和外部设备之间复制数据的过程.输入(input)就是从I/O设备复制数据到内存,输出(output)就是从内存复制数据到I/O设备. 一个文件可以理解成一串 ...
- TCP定时器 之 保活定时器
在用户进程启用了保活定时器的情况下,如果连接超过空闲时间没有数据交互,则保活定时器超时,向对端发送保活探测包,若(1)收到回复则说明对端工作正常,重置定时器等下下次达到空闲时间:(2) 收到其他回复, ...
- jQuery file upload --Multiple File Input Fields in One Form
The plugin can be applied to a form with multiple file input fields out of the box. The files are se ...
- shell脚本之for 列表循环
作用:对列表进行循环处理 语法: for var in list do commands done 案例: 1.读取列表中的值 2.读取列表中的复杂值 异常案例:未显示出“'”单引号,使语句出现异常 ...
- python 逻辑运算符and or
Python中逻辑运算符与C.C++.Golang等语言不太一样. 简单记录下. 1. 都是真或第一个真,第二个假 >>> a = 1 >>> b = 2 > ...