题目

注意到\(n\)不大并且深度不大。

记\((u,ls_u)\)为\(L\)边,\((u,rs_u)\)为\(R\)边。

所以我们可以设\(f_{p,i,j}\)表示从根到\(p\)有\(i\)条未标记的\(L\)边和\(j\)条未标记的\(R\)边的最小答案。

对于叶子结点,枚举\(i,j\)套题目给的公式。

对非叶子节点,\(f_{p,i,j}=\min(f_{ls_p,i+1,j}+f_{rs_p,i,j+1},f_{ls_p,i,j+1}+f_{rs_p,i+1,j})\)。

注意到我们是在二叉树上dfs,所以对于一个点,我们计算完其儿子后,其儿子的\(f\)就不需要再用了。这个可以省空间。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=40007;
int n,a[N],b[N],c[N],ls[N],rs[N];ll f[81][41][41];
int read(){int x;scanf("%d",&x);return x;}
int get(){int x=read();return x>0? x:n-x;}
void dfs(int u,int k,int l,int r)
{
if(!ls[u])
{
for(int i=0,j;i<=l;++i) for(j=0;j<=r;++j) f[k][i][j]=1ll*c[u]*(a[u]+i)*(b[u]+j);
return ;
}
dfs(ls[u],k+1,l+1,r),dfs(rs[u],k+2,l,r+1);
for(int i=0,j;i<=l;++i) for(j=0;j<=r;++j) f[k][i][j]=min(f[k+1][i+1][j]+f[k+2][i][j],f[k+1][i][j]+f[k+2][i][j+1]);
}
int main()
{
n=read();int i;
for(i=1;i<n;++i) ls[i]=get(),rs[i]=get();
for(i=1;i<=n;++i) a[i+n]=read(),b[i+n]=read(),c[i+n]=read();
dfs(1,1,0,0),cout<<f[1][0][0];
}

Luogu P4438 [HNOI/AHOI2018]道路的更多相关文章

  1. 【题解】Luogu P4438 [HNOI/AHOI2018]道路

    原题传送门 实际就是一道简单的树形dp 设f[u][i][j]表示从根结点到结点u经过i条未翻修公路,j条未翻修铁路的贡献最小值 边界条件:f[leaf][i][j]=(A+i)(B+j)C (题目上 ...

  2. 洛谷P4438 [HNOI/AHOI2018]道路(dp)

    题意 题目链接 Sol 每当出题人想起他出的HNOI 2018 Day2T3,他都会激动的拍打着轮椅 读题比做题用时长系列... \(f[i][a][b]\)表示从根到\(i\)的路径上,有\(a\) ...

  3. P4438 [HNOI/AHOI2018]道路

    辣稽题目 毁我青春 耗我钱财. 设\(f[x][i][j]\)为从1号点走到x点经过i条公路j条铁路,子树的最小代价. \(f[leaf][i][j]=(A+i)(B+j)C\) \(f[x][i][ ...

  4. Luogu 4438 [HNOI/AHOI2018]道路

    $dp$. 这道题最关键的是这句话: 跳出思维局限大胆设状态,设$f_{x, i, j}$表示从$x$到根要经过$i$条公路,$j$条铁路的代价,那么对于一个叶子结点,有$f_{x, i, j} = ...

  5. 【题解】Luogu P4436 [HNOI/AHOI2018]游戏

    原题传送门 \(n^2\)过百万在HNOI/AHOI2018中真的成功了qwqwq 先将没门分格的地方连起来,枚举每一个块,看向左向右最多能走多远,最坏复杂度\(O(n^2)\),但出题人竟然没卡(建 ...

  6. BZOJ5290 & 洛谷4438:[HNOI/AHOI2018]道路——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5290 https://www.luogu.org/problemnew/show/P4438 的确 ...

  7. [HNOI/AHOI2018]道路

    Description: W 国的交通呈一棵树的形状.W 国一共有\(n - 1\)个城市和\(n\)个乡村,其中城市从\(1\)到\(n - 1\) 编号,乡村从\(1\)到\(n\)编号,且\(1 ...

  8. luogu P4437 [HNOI/AHOI2018]排列

    luogu 问题本质是把\(a_i\)作为\(i\)的父亲,然后如果有环就不合法,否则每次要取数,要满足取之前他的父亲都被取过(父亲为0可以直接取),求最大价值 贪心想法显然是要把权值大的尽量放在后面 ...

  9. 【题解】 [HNOI/AHOI2018]道路 (动态规划)

    懒得复制,戳我戳我 Solution: \(dp[i][j][k]\)以\(i\)为子树根节点,到根节点中有\(j\)条公路没修,\(k\)条铁路没修,存子树不便利和 \(dp[i][j][k]=mi ...

随机推荐

  1. 计算机网络(七),TCP与UDP的区别

    七.TCP与UDP的区别 1.面向连接VS无连接 TCP面向连接而UDP面向无连接的,TCP是和单对单传送数据,UDP适合多波发布 2.可靠性 TCP利用握手,确认,重传机制提供了可靠性保证,UDP可 ...

  2. Python初记

    ------Python是一个优雅的大姐姐 我是通过<老男孩Python>学习Python,根据我手上的资源学习Python,资料不齐,但是这个是最好的,边学习边寻找有没有相同的类型. 在 ...

  3. 51nod11443-路径和树(图论,最短路,最小生成树)

    1443 路径和树 题目来源: CodeForces 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 收藏 关注 给定一幅无向带权连通图G = (V, E) ...

  4. php curl方法 支持 http https get post cookie

    //请求方式curl封装 @author Geyaru QQ 534208139 参数1:访问的URL,参数2:post数据(不填则为GET),参数3:提交的$cookies,参数4:是否返回$coo ...

  5. JavaWeb_Ajax通过JQuery和原生js异步传输数据

    菜鸟教程 传送门 AJAX 优点:在不重新加载整个页面的情况下,可以与服务器交换数据并更新部分网页内容 XMLHttpRequest 对象 传送门 (一) [JQuery]定时发送ajax请求 (二) ...

  6. R_Studio(决策树算法)鸢尾花卉数据集Iris是一类多重变量分析的数据集【精】

    鸢尾花卉数据集Iris是一类多重变量分析的数据集 通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类 针对 ...

  7. springboot学习问题一:启动springboot报错端口被占用解决办法

    一:问题 二:分析原因 springboot启动默认端口为8080,现在提示被占用,那我们可以修改springboot的启动端口,换一个未被占用的端口即可 三:解决方法 打开application.p ...

  8. Springboot2.x使用redis作为缓存

    一.Springboot2.x关于配置redis作为缓存. 基本配置如下: (1)在application.properties文件中 spring.redis.database=2 //第几个数据库 ...

  9. java基本算法

    1.链表 链表用来存储数据,由一系列的结点组成.这些结点的物理地址不一定是连续的,即可能连续,也可能不连续,但链表里的结点是有序的.一个结点由数据的值和下一个数据的地址组成.一个链表内的数据类型可以是 ...

  10. Mybaits 分页插件应用

    mybaits 分页插件省去了很多麻烦,接下来介绍如果应用分页插件 1.首先导入pagehelper.jar和jsplparser 2 在mybaits.xml中配置 <plugins> ...