Adaptive Synchronization of Dynamics on Evolving Complex Networks
原文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.114101
发表在:PRL 2008
--------------------------------------------------------------------------------------------------------------------------------------------------------------------
传统的模型的coupling的形式,

其中,Aij 代表j到i的coupling强度,Aii=0, xi(t)是对应节点i的n维状态变量,H:Rn --> Rn, 一共有N个节点。
假设:对于节点i,
a. (1)式的第一项是可观测的信号,定义该信号为,
b. 不知道输入的强度和,i.e., ∑j Aij.
接下来考虑下面的形式,

γ:constan gain 对于所有的节点. 同步解,

存在, 当σi(t) 等于

注意到,当

式子(4)可以写成,

其中

并且行和都等于0. 如果存在同步解,那么(7)式的最后一项就恒等于0. 动力学方程就变成了没有coulping的形式,

在这种情况下,根据master stability function theory, 同步解的稳定性可以通过选取合适的couping γ 保证.
需要注意的是,如果σi(t) 不满足(5)式,就不能保证同步解的稳定性了。下面将试着去如何设计σi(t) , 并且我们事先假设选取的 γ 能够使得同步解在σi(t) 满足(5)式时是稳定的。
在给出具体σi(t)的设计之前,对于节点i,我们先定义一个量,

并且选择ν满足,

其中τS和τN分别是节点动力系统xi(t)的time scale,网络结构Aij(t)的time scale. 有了上面的这个假设,(9)式中σi(t') 就可以用σi(t) 代替(我没怎么看出来。。),从而近似(9)式,得到,

其中

对于(9)式,如果等于0,那么就是同步,所以可以通过梯度下降的方法求近似解Δi的最小值,即,

其中α是可调参数。 未来避免(12)和(13)式算积分,将其写成ODE的形式如下,

综上,设计的adaptive 策略可以用一组微分方程表示,i.e., 式子(4),(11),(15),(16).
实验
考虑一个N个节点的随机网络,<k>N/2 条无向边,<k>是平均度。对于t=0时候,如果节点i和节点j有边,那么邻接矩阵Aij(0)=Aji(0)=1,否则Aij(0)=0. 当t>0的时候,假设网络的演化为,

. 并且网络的时间尺度τN=(ωmax )-1, much longer than 节点动力学的时间尺度τS,i.e., τN>τS,
考虑Rossler oscillators,

为了简单起见,假设自适应过程(15)非常快. 让α→oo, 那么 σi(t) 快速收敛到γCi(t)/Bi(t). 这样子,我们可以之间把(11)式子替换成,

v以及Ci,Bi的初值对动力学是至关重要的。假设Aij(0)是已知的,我们让Ci(0)=Bi(0)×[ΣjAij(0)]-1, 从而能够在初始时刻满足式子(6).
因为耦合系统可能存在其它的吸引子,我们希望设计合适的初值Bij(0),使得一开始耦合系统就落在同步解的吸引域中。为此,我们假设已经在同步解(8)上了,对式子(16)在时间轴上取平均,得到近似,Bi ≈ <si2>, 根据这个例子H(x)=(x, 0, 0)T, 我们有<si2>≈<k2><xS12>t, 其中<xS12>t是同步解(8)xS1(t)在时间轴上的平均, 即,

下面是数值结果,Figure 1(a)显示的是adaption ((16)和(18),(17))的结果,几乎50个节点的演化轨迹都是一样的(几乎重合了) . Fig. 1(b)是没有adaption的结果, i.e.,

Adaptive Synchronization of Dynamics on Evolving Complex Networks的更多相关文章
- 深度复数网络 Deep Complex Networks
转自:https://www.jiqizhixin.com/articles/7b1646c4-f9ae-4d5f-aa38-a6e5b42ec475 (如有版权问题,请联系本人) 目前绝大多数深度 ...
- The Unreasonable Effectiveness of Recurrent Neural Networks (RNN)
http://karpathy.github.io/2015/05/21/rnn-effectiveness/ There’s something magical about Recurrent Ne ...
- 论文翻译:2021_ICASSP 2021 ACOUSTIC ECHO CANCELLATION CHALLENGE: INTEGRATED ADAPTIVE ECHO CANCELLATION WITH TIME ALIGNMENT AND DEEP LEARNING-BASED RESIDUAL ECHO PLUS NOISE SUPPRESSION
论文地址:https://ieeexplore.ieee.org/abstract/document/9414462 ICASSP 2021声学回声消除挑战:结合时间对准的自适应回声消除和基于深度学习 ...
- NEURAL NETWORKS, PART 1: BACKGROUND
NEURAL NETWORKS, PART 1: BACKGROUND Artificial neural networks (NN for short) are practical, elegant ...
- 为什么深度神经网络难以训练Why are deep neural networks hard to train?
Imagine you're an engineer who has been asked to design a computer from scratch. One day you're work ...
- Complex social network Partition for Balanced Subnetworks---Hao Lan Zhang,Jiming Liu,Chunyu Feng,Chaoyi Pang,Tongliang Li,Jing He阅读
摘要:Abstract—Complex social network analysis methods have been applied extensively in various domains ...
- Efficient ticket lock synchronization implementation using early wakeup in the presence of oversubscription
A turn-oriented thread and/or process synchronization facility obtains a ticket value from a monoton ...
- Weighted Visibility Graph With Complex Network Features in the Detection of Epilepsy
Their data five data set, 100 single channel of EEG signals, each channel EEG has 4097 data point. t ...
- 论文翻译:2020_DCCRN: Deep Complex Convolution Recurrent Network for Phase-Aware Speech Enhancement
论文地址:DCCRN:用于相位感知语音增强的深度复杂卷积循环网络 论文代码:https://paperswithcode.com/paper/dccrn-deep-complex-convolutio ...
随机推荐
- 表视图为Group类型的注意问题
使用group类型的tableview时,第一个section距离navigationbar的距离很大,不符合这边的设计图. 使用 myTableView . sectionHeaderHeight ...
- etcd三节点安全集群搭建-pki安全认证
etcd安全集群搭建就是 pki安装认证 1.环境: 三台centos7. 主机 192.168.0.91 192.168.0.92 192.168.0.93 都关闭防火墙 都关闭selinux 配置 ...
- nginx其他目录下上传站点
1.查看主配置文件 [root@bogon ~]# cat /etc/nginx/nginx.conf user root root; worker_processes auto; worker_rl ...
- PropertyValuesProvider在日期绑定和校验中的应用
Github地址:https://github.com/andyslin/spring-ext 编译.运行环境:JDK 8 + Maven 3 + IDEA + Lombok spring-boot: ...
- (转)Dubbo + Zookeeper入门初探
一.搭建java和tomcat环境 二.搭建zookeeper 三.搭建dubbo监控中心 四.配置项目 4.1 服务提供方代码 4.2 服务使用方代码 五.测试 2018年2月15日,阿里巴巴的du ...
- 【VS开发】CTimeSpan类
CTimeSpan类. 日期和时间类简介 CTime类的对象表示的时间是基于格林威治标准时间(GMT)的.CTimeSpan类的对象表示的是时间间隔. CTi ...
- (转) pip Fatal error in launcher: Unable to create process using
接上篇“Eclipse启动报错:JVM terminated. Exit code=2”,今天把Python的安装位置也从C盘剪切到了D盘, 然后修改了Path环境变量中对应的盘符:D:\Python ...
- 用ufile和S3代替hdfs存储数据
一,添加ufile需在配置中添加: core-site.xml添加如下配置:<property><name>fs.ufile.impl</name><valu ...
- 自然语言处理工具HanLP-N最短路径分词
本篇给大家分享baiziyu 写的HanLP 中的N-最短路径分词.以为下分享的原文,部分地方有稍作修改,内容仅供大家学习交流! 首先说明在HanLP对外提供的接口中没有使用N-最短路径分词器的,作者 ...
- c++ split(getline实现)
众所周知 c++中string没有自带的split函数(亏你还是老大哥) 网上关于split函数的优秀写法很多 本人不再赘述 今几日翻C++API时发现了getline一个有趣的方法 istream& ...