传送门

感觉正着做不太好搞,考虑倒过来搞

容易想到贪心,每一层都贪心地选最小的宽度,然后发现 $WA$ 了...

因为一开始多选一点有时可以让下一层宽度更小

然后有一个神奇的结论,最高的方案一定有一种是底层最窄的方案

证明:

考虑把所有块按顺序排成一排并分成几段,每一段都表示一层,假设如图是一种底层最窄的方案

假设有一种更优的方案,使得底层更宽:

那么根据抽屉原理,蓝色至少一段中间一定有两个的红色分割线

不妨找到这样一个位置,标记为 $x,y$ :

那么我们显然可以构造一个新的方案,使得上面几层按 $y$ 之后红色的分割,下面几层按 $p$ 之前蓝色的分割,中间一层是 $[p,y]$

因为 $[p,y]$ 比 $[x,y]$ 大,所以更上层也一定小于 $[p,y]$,同理 $[p,y]$ 一定小于 $[p,q]$ ,所以下层一定大于 $[p,y]$

然后发现我们构造的新方案变成了层数更多,底层仍然最窄的方案

所以证明了底层最窄的方案一定有一种是最优方案

然后就可以 $dp$ 了,设 $f[i]$ 表示考虑完 $i,n$ 的块时,底层最窄的宽度,同时维护 $g[i]$ 表示考虑完 $i,n$ 的块,底层最窄时的最大层数

那么显然枚举所有 $j>i$ ,转移 $f[i]=min(sum[j-1]-sum[i])$($sum$ 是块宽度的前缀和)并且满足 $sum[j-1]-sum[i]>=f[j]$

然后发现对于两个决策 $k,j$ 其中 $k>j$,$k$ 会比 $j$ 更优仅当 $j$ 此时不合法,即 $sum[j-1]-sum[i]<f[j]$

又因为 $sum[i]$ 单调不增,所以合法决策点只会越来越小,所以用一个单调队列维护一波就可以做到 $O(n)$ 的转移了

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
typedef long long ll;
using namespace std;
inline ll read()
{
ll x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=2e5+;
int n,a[N],ans,g[N],Q[N];
ll sum[N],f[N];
// f[i]=sum[j-1]-sum[i-1] j>i sum[j-1]-sum[i-1]>=f[j]
// sum[i-1]<=sum[j-1]-f[j]
// k>j sum[k-1]-f[k]>sum[j-1]-f[j]
int main()
{
n=read();
for(int i=;i<=n;i++) a[i]=read();
for(int i=;i<=n;i++) sum[i]=sum[i-]+a[i];
int L=,R=; Q[]=n+;
for(int i=n;i;i--)
{
while(L<R&&sum[Q[L+]-]-sum[i-]>=f[Q[L+]]) L++;//队列中越后面的位置越优
f[i]=sum[Q[L]-]-sum[i-]; g[i]=g[Q[L]]+;
while(L<=R&&sum[Q[R]-]-f[Q[R]]<=sum[i-]-f[i]) R--;
Q[++R]=i;
}
printf("%d\n",g[]);
return ;
}

1233: [Usaco2009Open]干草堆tower的更多相关文章

  1. bzoj 1233: [Usaco2009Open]干草堆tower

    1233: [Usaco2009Open]干草堆tower Description 奶牛们讨厌黑暗. 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 .一共有N大包的 ...

  2. bzoj 1233: [Usaco2009Open]干草堆tower 【想法题】

    首先这题的$n^3$的DP是比较好想的 $f[i][j]$表示用前$i$包干草 且最顶层为第$j+1$包到第$i$包 所能达到的最大高度 然而数据范围还是太大了 因此我们需要去想一想有没有什么单调性 ...

  3. ●BZOJ 1233 [Usaco2009Open] 干草堆 tower

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1233 留坑.以后再来看看. (绝望,无奈,丧心...) (这个题的证明真的很诡异啊,看得我稀 ...

  4. bzoj 1233: [Usaco2009Open]干草堆tower【dp+单调栈】

    参考:https://www.cnblogs.com/N-C-Derek/archive/2012/07/11/usaco_09_open_tower.html 虽然长得很像斜率优化,但是应该不算-- ...

  5. 【BZOJ 1233】 [Usaco2009Open]干草堆tower (单调队列优化DP)

    1233: [Usaco2009Open]干草堆tower Description 奶牛们讨厌黑暗. 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 .一共有N大包的 ...

  6. bzoj1233[Usaco2009Open]干草堆tower 单调队列优化dp

    1233: [Usaco2009Open]干草堆tower Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 983  Solved: 464[Submi ...

  7. bzoj1233: [Usaco2009Open]干草堆tower

    Description 奶牛们讨厌黑暗. 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 .一共有N大包的干草(1<=N<=100000)(从1到N编号) ...

  8. bzoj1233 [Usaco2009Open]干草堆tower 【单调队列dp】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1233 单调队列优化的第一题,搞了好久啊,跟一开始入手斜率优化时感觉差不多... 这一题想通了 ...

  9. BZOJ1233 [Usaco2009Open]干草堆tower 【单调队列优化dp】

    题目链接 BZOJ1233 题解 有一个贪心策略:同样的干草集合,底长小的一定不比底长大的矮 设\(f[i]\)表示\(i...N\)形成的干草堆的最小底长,同时用\(g[i]\)记录此时的高度 那么 ...

随机推荐

  1. 2019-3-1-C#-json-转-xml-字符串

    title author date CreateTime categories C# json 转 xml 字符串 lindexi 2019-03-01 09:20:24 +0800 2019-1-1 ...

  2. 【LeetCode】二分 binary_search(共58题)

    [4]Median of Two Sorted Arrays [29]Divide Two Integers [33]Search in Rotated Sorted Array [34]Find F ...

  3. nginx-博客阅读笔记记录-20190916

    Nginx 入门学习教程 Ng官网解释: nginx [engine x]是最初由Igor Sysoev编写的HTTP和反向代理服务器,邮件代理服务器和通用TCP / UDP代理服务器. 维基百科解释 ...

  4. Ts 的类

    TS 中的公共.私有和受保护的修饰符: 1.public表示公共的,用来指定在创建实例后可以通过实例访问的,也就是类定义的外部可以访问的属性和方法.默认是 public 2.private修饰符表示私 ...

  5. Tenka1 Programmer Contest D - Crossing

    链接 Tenka1 Programmer Contest D - Crossing 给定\(n\),要求构造\(k\)个集合\({S_k}\),使得\(1\)到\(n\)中每个元素均在集合中出现两次, ...

  6. ueditor编辑器中从word中复制带图片的信息的操作演示

    我司需要做一个需求,就是使用富文本编辑器时,不要以上传附件的形式上传图片,而是以复制粘贴的形式上传图片. 在网上找了一下,有一个插件支持这个功能. WordPaster 安装方式如下: 直接使用Wor ...

  7. Python_007(深浅拷贝)

    一.基础数据类型的补充 1.其他类型之间的相互转换 例如:str = int(str) str => int; int = list(int) int => list;  tuple = ...

  8. php匿名函数和闭包的理解

    PHP匿名函数和闭包使用的句法与普通函数相同,但匿名函和闭包数其实是伪装成函数的对象. 匿名函数:就是没有名称的函数.匿名函数可以赋值给变量,对象传递.不过匿名函数仍是函数,因此可以调用,还可以传入参 ...

  9. vue 如何通过监听路由变化给父级路由菜单添加active样式

    1.项目需求:在项目开发中,多级菜单的情况下,勾选子菜单时,需要在父级菜单添加active样式. 2.遇到的问题:一级路由菜单的话,点击当前路由会自动在路由标签上添加router-link-exact ...

  10. openstack介绍及共享组件——消息队列rabbitmq

    一.云计算的前世今生 所有的新事物都不是突然冒出来的,都有前世和今生.云计算也是IT技术不断发展的产物. 要理解云计算,需要对IT系统架构的发展过程有所认识. 请看下 IT系统架构的发展到目前为止大致 ...