题目大意:求lcm(1,2)+lcm(1,3)+lcm(2,3)+....+lcm(1,n)+....+lcm(n-2,n)+lcm(n-1,n)
解法:设sum(n)为sum(lcm(i,j))(1<=i<j<=n)之间最小公倍数的和,
f(n)为sum(i*n/gcd(i,n))(1<=i<n)
那么sum(n)=sum(n-1)+f(n)。
可以用线性欧拉筛选+递推来做。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
#define N 207 typedef unsigned long long LL;
const int maxn=;
LL phi[maxn],sum[maxn],f[maxn]; void Euler()
{
memset(phi,,sizeof(phi));
int i,j;
phi[]=;
for(i=;i<maxn;i++)
{
if(phi[i])
continue;
for(j=i;j<maxn;j+=i)
{
if(!phi[j])
phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
for(i=;i<maxn;i++)
phi[i]=phi[i]*i/; //与i互质的数之和
} void init()
{
Euler();
memset(sum,,sizeof(sum));
memset(f,,sizeof(f));
int i,j;
sum[]=f[]=;
for(i=;i<maxn;i++)
{
f[i]+=phi[i]*i; //与i互质的数之间的lcm之和
for(j=*i;j<maxn;j+=i)
f[j]+=phi[i]*j; //gcd(x,j)=i的sum(lcm(x,j))
sum[i]=sum[i-]+f[i];
}
} int main()
{
init();
int t,icase=,n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
printf("Case %d: %llu\n",++icase,sum[n]);
}
return ;
}

【转】UVALive 5964 LCM Extreme --欧拉函数的更多相关文章

  1. [洛谷P5106]dkw的lcm:欧拉函数+容斥原理+扩展欧拉定理

    分析 考虑使用欧拉函数的计算公式化简原式,因为有: \[lcm(i_1,i_2,...,i_k)=p_1^{q_{1\ max}} \times p_2^{q_{2\ max}} \times ... ...

  2. 【洛谷】4917:天守阁的地板【欧拉函数的应用】【lcm与gcd】【同除根号优化】

    P4917 天守阁的地板 题目背景 在下克上异变中,博丽灵梦为了找到异变的源头,一路打到了天守阁 异变主谋鬼人正邪为了迎击,将天守阁反复颠倒过来,而年久失修的天守阁也因此掉下了很多块地板 异变结束后, ...

  3. UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)

    UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...

  4. SPOJ 5152 Brute-force Algorithm EXTREME && HDU 3221 Brute-force Algorithm 快速幂,快速求斐波那契数列,欧拉函数,同余 难度:1

    5152. Brute-force Algorithm EXTREME Problem code: BFALG Please click here to download a PDF version ...

  5. UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)

    题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此 ...

  6. UVa 11426 (欧拉函数 GCD之和) GCD - Extreme (II)

    题意: 求sum{gcd(i, j) | 1 ≤ i < j ≤ n} 分析: 有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x ...

  7. UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...

  8. UVaLive 7362 Farey (数学,欧拉函数)

    题意:给定一个数 n,问你0<= a <=n, 0 <= b <= n,有多少个不同的最简分数. 析:这是一个欧拉函数题,由于当时背不过模板,又不让看书,我就暴力了一下,竟然A ...

  9. UVA 11426 GCD - Extreme (II) 欧拉函数

    分析:枚举每个数的贡献,欧拉函数筛法 #include <cstdio> #include <iostream> #include <ctime> #include ...

随机推荐

  1. bootstrap glyphicon图标无法显示

    如果不注意bootstrap引入css和fonts的规范,则可能会导致bootstrap 在显示glyphicon图标时无法正常显示,显示为方框. 此时可搜索bootstrap.css中的.glyph ...

  2. C# 如何使用 svcutil.exe 创建 WCF 客户端代码

    工具:svcutil.exe 参数:指定wsdl.输出源码文件.输出配置文件 示例: D:\>svcutil.exe http://localhost:8087/DataService/?wsd ...

  3. Atitit.木马 病毒 免杀 技术 360免杀 杀毒软件免杀 原理与原则 attilax 总结

    Atitit.木马 病毒 免杀 技术 360免杀 杀毒软件免杀 原理与原则 attilax 总结 1. ,免杀技术的用途2 1.1. 病毒木马的编写2 1.2. 软件保护所用的加密产品(比如壳)中,有 ...

  4. Hibernate的各种关联关系

    1.有多中映射 方法 //用XML配置时 <mapping resource="com/liugch/bean/Student.hbm.xml" /> //用注解配置时 ...

  5. Ubuntu14.04下安装Hadoop2.5.1 (单机模式)

    本文地址:http://www.cnblogs.com/archimedes/p/hadoop-standalone-mode.html,转载请注明源地址. 欢迎关注我的个人博客:www.wuyudo ...

  6. IOS 杂笔-4(属性与成员变量的区别)

    属性可以用点语法,比如self.xxx,在外部调用也同样可以someClass.xxx. 属性实际上是对一组set和get方法的简单封装(oc的get方法没有get前缀),同样会自动生成一个私有的成员 ...

  7. (转)Block的使用

    转:http://my.oschina.net/leejan97/blog/268536 本文翻译自苹果的文档,有删减,也有添加自己的理解部分. 如果有Block语法不懂的,可以参考fuckingbl ...

  8. Nuget~管理自己的包包~丢了的包包快速恢复

    之前写过一篇Nuget~管理自己的包包的文章,今天来讲Nuget的另一个东西,就是找回丢失的DLL,我们在引用包包后,在当前解决方案根目录就生成一个packages的目前,里面有我们从nuget下载的 ...

  9. mac:ssh登陆总是需要输入钥匙串密码解决

    方法1: finder -> 左上角:前往->按住option建->多出一个资源->KeyChains->第一个文件夹(删除掉次文件夹) 然后重启即可 方法2: ssh- ...

  10. SQL Server游标的使用【转】

    游标是邪恶的! 在关系数据库中,我们对于查询的思考是面向集合的.而游标打破了这一规则,游标使得我们思考方式变为逐行进行.对于类C的开发人员来着,这样的思考方式会更加舒服. 正常面向集合的思维方式是: ...