(Gym 100685G) Gadget Hackwrench(LCA在线ST)
2 seconds
64 megabytes
standard input
standard output
Chip 'n' Dale rescue rangers! But observant viewers know that help is usually required by Chip and Dale themselves. Today you are in the role of cunning Gadget Hackwrench.
So, Chip and Dale are again in the paws of Fat Cat. He doesn't like rodents much and therefore prepared a treacherous test. He is going to put them to a labyrinth and see if they can escape from it. The labyrinth is actually built as a tree where each edge has fixed direction (by definitiontree is a connected unoriented graph without cycles).
Gadget has intercepted a talk between Fat Cat and his henchmen about future tests. For each test round she knows the exact location where Chip and Dale are to be put by Fat Cat and the location of an exit. Gadget wants to compute whether they will be able to find an exit for each test.
The first line of input contains an integer N (1 ≤ N ≤ 105) — the number of vertices in a graph.
On the next N - 1 lines of input directed arcs of the tree are given. On the (i + 1)th line integer numbers ai and bi are given (1 ≤ ai, bi ≤ N) denoting an arc from vertex ai to vertex bi. It is guaranteed that arcs a1, a2, ..., an - 1 without orientation form a tree.
Then a string with integer number M (1 ≤ M ≤ 105) is given — the number of queries to process. Next M lines describe queries: (n + 1 + i)thline contain integers xi and yi (1 ≤ xi, yi ≤ N).
For each query please output a separate line containing 'Yes' (without quotes) if graph contains a path between xi and yi, or 'No' (without quotes) in other case.
4 1 2 3 1 4 1 6 1 2 3 2 2 3 4 2 4 3 2 1
Yes Yes No Yes No No 由于3 2能够通行而2 3无法通行可知通行有方向上的限制,为了解决这种问题,可以人为地在每一对(u,v)之间加上一个负边,长度为-1,而设原来方向的边为+1,
那么对于每个lca来说,如果u到lca的距离由wei负边构成,v到lca的距离由正边构成,那么这两个点联通
#include <iostream>
#include <cstdio>
#include <cstring>
#define scan(x) scanf("%d",&x)
#define scan2(x,y) scanf("%d%d",&x,&y)
#define scan3(x,y,z) scanf("%d%d%d",&x,&y,&z)
using namespace std;
const int Max=1e5+;
const int E=2e5+;
int head[Max],nex[E],pnt[E],cost[E],edge;
int vex[Max<<],R[Max<<],vis[Max],dis[Max],first[Max],tot;
int n;
void Addedge(int u,int v,int c)
{
pnt[edge]=v;
cost[edge]=c;
nex[edge]=head[u];
head[u]=edge++;
}
void dfs(int u,int deep)
{
vis[u]=;
vex[++tot]=u;
first[u]=tot;
R[tot]=deep;
for(int x=head[u]; x!=-; x=nex[x])
{
int v=pnt[x],c=cost[x];
if(!vis[v])
{
dis[v]=dis[u]+c;
dfs(v,deep+);
vex[++tot]=u;
R[tot]=deep;
}
}
}
int dp[Max<<][];
void ST(int n)
{
int x,y;
for(int i=; i<=n; i++) dp[i][]=i;
for(int j=; (<<j)<=n; j++)
{
for(int i=; i+(<<j)-<=n; i++)
{
x=dp[i][j-];
y=dp[i+(<<(j-))][j-];
dp[i][j]=(R[x]<R[y]?x:y);
}
}
}
int RMQ(int l,int r)
{
int k=,x,y;
while((<<(k+))<=r-l+) k++;
x=dp[l][k];
y=dp[r-(<<k)+][k];
return (R[x]<R[y])?x:y;
}
int LCA(int u,int v)
{
int x=first[u],y=first[v];
if(x>y) swap(x,y);
int res=RMQ(x,y);
return vex[res];
}
int vis2[Max];
void Init()
{
edge=;
memset(head,-,sizeof(head));
memset(nex,-,sizeof(nex));
memset(vis,,sizeof(vis));
memset(vis2,,sizeof(vis2));
}
int main()
{
int T,Q;
Init();
int u,v,c;
scan(n);
for(int i=; i<n-; i++)
{
scan2(u,v);
Addedge(u,v,);
Addedge(v,u,-);
vis2[v]=;
}
int root=;
for(int i=; i<=n; i++) if(!vis2[i])
{
root=i;
break;
}
tot=;
dis[root]=;
dfs(root,);
ST(*n);
scan(Q);
while(Q--)
{
scan2(u,v);
int lca=LCA(u,v);
cout<<lca<<endl;
int depu=R[first[u]]-R[first[lca]];
int depv=R[first[v]]-R[first[lca]];
int disu=dis[u]-dis[lca];
int disv=dis[v]-dis[lca];
//lca与u之间都要为负边,lca与v之间都要为正边
//u到lca距离全负,因为u的父亲由负边而来
//v到lca距离全正
if(depu==-disu&&depv==disv) puts("Yes");
else puts("No");
}
return ;
}
(Gym 100685G) Gadget Hackwrench(LCA在线ST)的更多相关文章
- hdu 2586(LCA在线ST)
How far away ? Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s): A ...
- LCA Codeforces 100685G Gadget Hackwrench
题目传送门 题意:一棵有向的树,问u到v是否可达 分析:假设是无向树,DFS时正向的权值+1,反向的权值-1,然后找到LCA后判断dep数组和d数组就可以了 /******************** ...
- HDU 2586 How far away ?(经典)(RMQ + 在线ST+ Tarjan离线) 【LCA】
<题目链接> 题目大意:给你一棵带有边权的树,然后进行q次查询,每次查询输出指定两个节点之间的距离. 解题分析:本题有多重解决方法,首先,可用最短路轻易求解.若只用LCA解决本题,也有三种 ...
- LCA在线算法ST算法
求LCA(近期公共祖先)的算法有好多,按在线和离线分为在线算法和离线算法. 离线算法有基于搜索的Tarjan算法较优,而在线算法则是基于dp的ST算法较优. 首先说一下ST算法. 这个算法是基于RMQ ...
- POJ 1470 Closest Common Ancestors (LCA, dfs+ST在线算法)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 13370 Accept ...
- 求LCA最近公共祖先的在线ST算法_C++
ST算法是求最近公共祖先的一种 在线 算法,基于RMQ算法,本代码用双链树存树 预处理的时间复杂度是 O(nlog2n) 查询时间是 O(1) 的 另附上离线算法 Tarjan 的链接: http ...
- Gym100685G Gadget Hackwrench(倍增LCA)
题目大概说一棵边有方向的树,q个询问,每次询问结点u是否能走到v. 倍增LCA搞即可: 除了par[k][u]表示u结点往上走2k步到达的结点, 再加上upp[k][u]表示u结点往上走2k步经过边的 ...
- LCA在线算法详解
LCA(最近公共祖先)的求法有多种,这里先介绍第一种:在线算法. 声明一下:下面的内容参考了http://www.cnblogs.com/scau20110726/archive/2013/05/26 ...
- poj 1330 Nearest Common Ancestors lca 在线rmq
Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...
随机推荐
- c# 支付宝查单补单
谁谁谁手机那边支付宝支付成功扣钱了,游戏里面却没有充钱,唯有写个补单程序. 首先要查单,查单接口(交易信息查询接口:https://mapi.alipay.com/gateway.do),服务名称:s ...
- 【MySQL】InnoDB: Error: checksum mismatch in data file 报错
参考:http://www.jb51.net/article/66951.htm 用5.7版本启动原5.5实例后,再用5.5启动出现以下报错 InnoDB: Error: checksum misma ...
- NHibernate系列文章十一:NHibernate并发控制
摘要 在同一时刻数据访问量和更新次数比较大的系统中,产生了数据的并发访问问题.并发访问使得在这样的环境中,所有用户(程序.实际用户.进程.线程等)的操作不产生负面问题. 如果不使用并发,在两个用户同时 ...
- Form文件夹开发步骤
1.开发完一个Form,测试OK 1.添加Object Groups 操作如下:在同一窗口打开标准的Form APPSTAND.FMB 和我们自己客制的Form,并且选择APPSTAND.FMB的Ob ...
- jsTree搜索排序向上向下
var _node = null, _all_match = 0, _current_match = 0; $(document).ready(function() { $('#area_settin ...
- cursor
BeginWaitCursor(); // display the hourglass cursor // do some lengthy processing Sleep(3000); EndWai ...
- swift 取出中间文本
func stringmid (wholestring:String,front:String,behind:String)->String { if wholestring.isEmpty ...
- ElasticSearch 2 (10) - 在ElasticSearch之下(深入理解Shard和Lucene Index)
摘要 从底层介绍ElasticSearch Shard的内部原理,以及回答为什么使用ElasticSearch有必要了解Lucene的内部工作方式? 了解ElasticSearch API的代价 构建 ...
- machine learning----->学习成绩
斯坦福大学机器学习公开课学习成绩:
- Linux系统编程-防止僵尸进程产生的常用方法
1.父进程调用wait函数或waitpid函数回收子进程. 2.让init进程去处理子进程回收工作,代码中加上"signal(SIGCHLD, SIG_IGN)"这句话.