英文链接:http://scikit-learn.org/stable/auto_examples/applications/topics_extraction_with_nmf_lda.html

这是一个使用NMF和LDA对一个语料集进行话题抽取的例子。

输入分别是是tf-idf矩阵(NMF)和tf矩阵(LDA)。

输出是一系列的话题,每个话题由一系列的词组成。

默认的参数(n_samples/n_features/n_topics)会使这个例子运行数十秒。

你可以尝试修改问题的规模,但是要注意,NMF的时间复杂度是多项式级别的,LDA的时间复杂度与(n_samples*iterations)成正比。

几点注意事项:

(1)其中line 61的代码需要注释掉,才能看到输出结果。

(2)第一次运行代码,程序会从网上下载新闻数据,然后保存在一个缓存目录中,之后再运行代码,就不会重复下载了。

(3)关于NMF和LDA的参数设置,可以到sklearn的官网上查看【NMF官方文档】【LDA官方文档】。

(4)该代码对应的sk-learn版本为 scikit-learn 0.17.1

代码:

 # Author: Olivier Grisel <olivier.grisel@ensta.org>
# Lars Buitinck <L.J.Buitinck@uva.nl>
# Chyi-Kwei Yau <chyikwei.yau@gmail.com>
# License: BSD 3 clause from __future__ import print_function
from time import time from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.decomposition import NMF, LatentDirichletAllocation
from sklearn.datasets import fetch_20newsgroups n_samples = 2000
n_features = 1000
n_topics = 10
n_top_words = 20 def print_top_words(model, feature_names, n_top_words):
for topic_idx, topic in enumerate(model.components_):
print("Topic #%d:" % topic_idx)
print(" ".join([feature_names[i]
for i in topic.argsort()[:-n_top_words - 1:-1]]))
print() # Load the 20 newsgroups dataset and vectorize it. We use a few heuristics
# to filter out useless terms early on: the posts are stripped of headers,
# footers and quoted replies, and common English words, words occurring in
# only one document or in at least 95% of the documents are removed. print("Loading dataset...")
t0 = time()
dataset = fetch_20newsgroups(shuffle=True, random_state=1,
remove=('headers', 'footers', 'quotes'))
data_samples = dataset.data
print("done in %0.3fs." % (time() - t0)) # Use tf-idf features for NMF.
print("Extracting tf-idf features for NMF...")
tfidf_vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, #max_features=n_features,
stop_words='english')
t0 = time()
tfidf = tfidf_vectorizer.fit_transform(data_samples)
print("done in %0.3fs." % (time() - t0)) # Use tf (raw term count) features for LDA.
print("Extracting tf features for LDA...")
tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2, max_features=n_features,
stop_words='english')
t0 = time()
tf = tf_vectorizer.fit_transform(data_samples)
print("done in %0.3fs." % (time() - t0)) # Fit the NMF model
print("Fitting the NMF model with tf-idf features,"
"n_samples=%d and n_features=%d..."
% (n_samples, n_features))
t0 = time()
nmf = NMF(n_components=n_topics, random_state=1, alpha=.1, l1_ratio=.5).fit(tfidf)
exit()
print("done in %0.3fs." % (time() - t0)) print("\nTopics in NMF model:")
tfidf_feature_names = tfidf_vectorizer.get_feature_names()
print_top_words(nmf, tfidf_feature_names, n_top_words) print("Fitting LDA models with tf features, n_samples=%d and n_features=%d..."
% (n_samples, n_features))
lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=5,
learning_method='online', learning_offset=50.,
random_state=0)
t0 = time()
lda.fit(tf)
print("done in %0.3fs." % (time() - t0)) print("\nTopics in LDA model:")
tf_feature_names = tf_vectorizer.get_feature_names()
print_top_words(lda, tf_feature_names, n_top_words)

结果:

Loading dataset...
done in 2.222s.
Extracting tf-idf features for NMF...
done in 2.730s.
Extracting tf features for LDA...
done in 2.702s.
Fitting the NMF model with tf-idf features,n_samples=2000 and n_features=1000...
done in 1.904s. Topics in NMF model:
Topic #0:
don just people think like know good time right ve say did make really way want going new year ll
Topic #1:
windows thanks file card does dos mail files know program use advance hi window help software looking ftp video pc
Topic #2:
drive scsi ide drives disk controller hard floppy bus hd cd boot mac cable card isa rom motherboard mb internal
Topic #3:
key chip encryption clipper keys escrow government algorithm security secure encrypted public nsa des enforcement law privacy bit use secret
Topic #4:
00 sale 50 shipping 20 10 price 15 new 25 30 dos offer condition 40 cover asking 75 01 interested
Topic #5:
armenian armenians turkish genocide armenia turks turkey soviet people muslim azerbaijan russian greek argic government serdar kurds population ottoman million
Topic #6:
god jesus bible christ faith believe christians christian heaven sin life hell church truth lord does say belief people existence
Topic #7:
mouse driver keyboard serial com1 port bus com3 irq button com sys microsoft ball problem modem adb drivers card com2
Topic #8:
space nasa shuttle launch station sci gov orbit moon earth lunar satellite program mission center cost research data solar mars
Topic #9:
msg food chinese flavor eat glutamate restaurant foods reaction taste restaurants salt effects carl brain people ingredients natural causes olney Fitting LDA models with tf features, n_samples=2000 and n_features=1000...
done in 22.548s. Topics in LDA model:
Topic #0:
government people mr law gun state president states public use right rights national new control american security encryption health united
Topic #1:
drive card disk bit scsi use mac memory thanks pc does video hard speed apple problem used data monitor software
Topic #2:
said people armenian armenians turkish did saw went came women killed children turkey told dead didn left started greek war
Topic #3:
year good just time game car team years like think don got new play games ago did season better ll
Topic #4:
10 00 15 25 12 11 20 14 17 16 db 13 18 24 30 19 27 50 21 40
Topic #5:
windows window program version file dos use files available display server using application set edu motif package code ms software
Topic #6:
edu file space com information mail data send available program ftp email entry info list output nasa address anonymous internet
Topic #7:
ax max b8f g9v a86 pl 145 1d9 0t 34u 1t 3t giz bhj wm 2di 75u 2tm bxn 7ey
Topic #8:
god people jesus believe does say think israel christian true life jews did bible don just know world way church
Topic #9:
don know like just think ve want does use good people key time way make problem really work say need

SK-Learn使用NMF(非负矩阵分解)和LDA(隐含狄利克雷分布)进行话题抽取的更多相关文章

  1. NMF非负矩阵分解

    著名的科学杂志<Nature>于1999年刊登了两位科学家D.D.Lee和H.S.Seung对数学中非负矩阵研究的突出成果.该文提出了一种新的矩阵分解思想――非负矩阵分解(Non-nega ...

  2. 数据降维-NMF非负矩阵分解

    1.什么是非负矩阵分解? NMF的基本思想可以简单描述为:对于任意给定的一个非负矩阵V,NMF算法能够寻找到一个非负矩阵W和一个非负矩阵H,使得满足 ,从而将一个非负的矩阵分解为左右两个非负矩阵的乘积 ...

  3. 主题模型(概率潜语义分析PLSA、隐含狄利克雷分布LDA)

    一.pLSA模型 1.朴素贝叶斯的分析 (1)可以胜任许多文本分类问题.(2)无法解决语料中一词多义和多词一义的问题--它更像是词法分析,而非语义分析.(3)如果使用词向量作为文档的特征,一词多义和多 ...

  4. 非负矩阵分解NMF

    http://blog.csdn.net/pipisorry/article/details/52098864 非负矩阵分解(NMF,Non-negative matrix factorization ...

  5. 文本主题模型之非负矩阵分解(NMF)

    在文本主题模型之潜在语义索引(LSI)中,我们讲到LSI主题模型使用了奇异值分解,面临着高维度计算量太大的问题.这里我们就介绍另一种基于矩阵分解的主题模型:非负矩阵分解(NMF),它同样使用了矩阵分解 ...

  6. 浅谈隐语义模型和非负矩阵分解NMF

    本文从基础介绍隐语义模型和NMF. 隐语义模型 ”隐语义模型“常常在推荐系统和文本分类中遇到,最初来源于IR领域的LSA(Latent Semantic Analysis),举两个case加快理解. ...

  7. 非负矩阵分解(4):NMF算法和聚类算法的联系与区别

    作者:桂. 时间:2017-04-14   06:22:26 链接:http://www.cnblogs.com/xingshansi/p/6685811.html 声明:欢迎被转载,不过记得注明出处 ...

  8. 推荐算法——非负矩阵分解(NMF)

    一.矩阵分解回想 在博文推荐算法--基于矩阵分解的推荐算法中,提到了将用户-商品矩阵进行分解.从而实现对未打分项进行打分. 矩阵分解是指将一个矩阵分解成两个或者多个矩阵的乘积.对于上述的用户-商品矩阵 ...

  9. 非负矩阵分解(NMF)原理及算法实现

    一.矩阵分解回想 矩阵分解是指将一个矩阵分解成两个或者多个矩阵的乘积.对于上述的用户-商品(评分矩阵),记为能够将其分解为两个或者多个矩阵的乘积,如果分解成两个矩阵和 .我们要使得矩阵和 的乘积能够还 ...

随机推荐

  1. 搜索结果高亮显示(不改变html标签)

      分类: 代码2010-02-28 13:44 1574人阅读 评论(3) 收藏 举报 htmlinputstring 一.问题的产生 搜索结果高亮显示,在新闻标题,来源之类的地方好做,只需要用st ...

  2. maven错误:Project configuration is not up-to-date with pom.xml

    原因: 1.导入maven工程后,出现如下错误: Description    Resource    Path    Location    TypeProject configuration is ...

  3. 超链接的#和javascript:void(0)的区别

    转载于:http://www.uw3c.com/cssviews/css12.html   在工作中,如果我们想把a标签中的链接置成空链接,我们一般会用两种方法: 1 <a href=" ...

  4. java里的static和final

    本节介绍JAVA里static和final的作用和使用方法以及一些需要注意的问题. 一.static static表示"全局"或"静态",用来修饰成员变量和成员 ...

  5. SP_APPROVALSET_OVERTIME 插入單據

    CREATE OR REPLACE PROCEDURE SP_APPROVALSET_OVERTIME(VAPPLY_NO varchar2,VAPPLYKIND_NO varchar2,VFAC_N ...

  6. 学习WCF之——wcf程序的创建

    这是我参考的主要资料——wcf学习之旅:http://www.cnblogs.com/artech/archive/2007/02/26/656901.html 首先,如博客上介绍的一样,创建空白的项 ...

  7. SQL Server并行死锁案例解析

    并行执行作为提升查询响应时间,提高用户体验的一种有效手段被大家所熟知,感兴趣的朋友可以看我以前的博客SQL Server优化技巧之SQL Server中的"MapReduce", ...

  8. Orleans中的Timer和Reminder

    Timers and Reminder 定时器和提醒器 Orleans runtime 允许开发人员通过一种叫做timer和另一种叫做reminder的机制为grain添加周期性行为.接下来我分别为大 ...

  9. 在Github上注册账户

    首先打开网址:https://github.com/ 进行注册     注册完成后进入邮箱验证     在右上角创建一个简单的项目仓库 创建完成

  10. ubuntu 12.04 安装 redis

    原文地址:http://ijonas.com/software-development/nosql/412/ 1 Installing Redis 2.6.x on Ubuntu 12.04 and ...