POJ1679(次小生成树)
The Unique MST
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 36692 | Accepted: 13368 |
Description
Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties:
1. V' = V.
2. T is connected and acyclic.
Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.
Input
Output
Sample Input
2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2
Sample Output
3
Not Unique! 题解:
次小生成树,维护一个两点间的最小距离,最后再向上加
#include <stdio.h>
#include <algorithm>
#include <vector>
#include <cstring>
#include <iostream>
using namespace std;
#define line cout<<"------------------"<<endl;
const int MAXN=1e4+10;
const int INF=0x3f3f3f3f;
int n,m;
struct node{
int x,y;
int v;
bool vis;
}Edge[MAXN];
bool cmp(node a,node b)
{
return a.v<b.v;
}
int pre[MAXN];
int Find(int a)
{
if(pre[a]==a)
return a;
return Find(pre[a]);
}
vector<int >G[110]; int maxd[110][110];//并查集划到一个树上后,树上任意两点之间的距离 void init()
{
for (int i = 1; i <=n; ++i) {
G[i].clear();
pre[i] = i;
G[i].push_back(i);
} }
int main()
{
int _;
scanf("%d",&_);
while(_--)
{
scanf("%d%d",&n,&m);
init();
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&Edge[i].x,&Edge[i].y,&Edge[i].v);
Edge[i].vis=false;
}
sort(Edge+1,Edge+1+m,cmp);
int sum=0;
for (int i = 1; i <=m ; ++i) {
int x=Find(Edge[i].x);
int y=Find(Edge[i].y);
if(x!=y)
{
pre[x]=y;
sum+=Edge[i].v;
int len1=G[x].size();
int len2=G[y].size();
for (int j = 0; j <len1 ; ++j) {
for (int k = 0; k <len2 ; ++k) {
maxd[G[x][j]][G[y][k]]=maxd[G[y][k]][G[x][j]]=Edge[i].v;//构建两点间最小距离
}
}
int tem[110];
for (int j = 0; j <len2 ; ++j) {
tem[j]=G[y][j];
}
for (int j = 0; j <len1 ; ++j) {
G[y].push_back(G[x][j]);
}
for (int j = 0; j <len2 ; ++j) {
G[x].push_back(tem[j]);
}
Edge[i].vis=true;
}
}
int cis=INF;
for (int i = 1; i <=m ; ++i) {//从不是最小生成树上的边,遍历向上加。找到次小生成树
if(!Edge[i].vis)
cis=min(cis,sum+Edge[i].v-maxd[Edge[i].x][Edge[i].y]);
}
if(cis>sum)
printf("%d\n",sum);
else
printf("Not Unique!\n");
} return 0;
}
//poj1679
POJ1679(次小生成树)的更多相关文章
- POJ1679(次小生成树)
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24201 Accepted: 8596 D ...
- poj1679次小生成树入门题
次小生成树求法:例如求最小生成树用到了 1.2.4这三条边,总共5条边,那循环3次的时候,每次分别不用1.2.4求得最小生成树的MST,最小的MST即为次小生成树 如下代码maxx即求最小生成树时求得 ...
- poj1679 次小生成树
prim方法:先求过一遍prim,同时标记使用过得边.然后同时记录任意2点间的最大值. 每次加入一条新的边,会产生环,删去环中的最大值即可. #include<stdio.h> #incl ...
- POJ1679 The Unique MST[次小生成树]
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 28673 Accepted: 10239 ...
- 次小生成树(POJ1679/CDOJ1959)
POJ1679 首先求出最小生成树,记录权值之和为MinST.然后枚举添加边(u,v),加上后必形成一个环,找到环上非(u,v)边的权值最大的边,把它删除,计算当前生成树的权值之和,取所有枚举加边后生 ...
- POJ1679 The Unique MST【次小生成树】
题意: 判断最小生成树是否唯一. 思路: 首先求出最小生成树,记录现在这个最小生成树上所有的边,然后通过取消其中一条边,找到这两点上其他的边形成一棵新的生成树,求其权值,通过枚举所有可能,通过这些权值 ...
- POJ1679 The Unique MST 【次小生成树】
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 20421 Accepted: 7183 D ...
- 次小生成树(poj1679)
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 20737 Accepted: 7281 D ...
- POJ1679 The Unique MST —— 次小生成树
题目链接:http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total S ...
随机推荐
- 基于k8s的ES集群定期删除索引
apiVersion: batch/v1beta1 kind: CronJob metadata: name: elasticsearch namespace: elasticsearch label ...
- ACM-ICPC(9/26)
DP专题 多阶段决策:递推——逆推方式(难度较大),记忆化搜索方式,考虑当前决策层(cur) 01背包:变形众多,两种方式,一是考虑阶段的方式, ,另一种是刷表法 题目推荐: bzoj 4247 De ...
- 【转】Android总结之drawable(hdpi,mdpi,ldpi)文件夹的使用
做Android有段时间了,但是好多细节还没有深入理解,关于Android中drawable文件夹的使用理解的就不是很深入. Android为开发者提供了两种解决适配问题的方法,第一种方式是使用dip ...
- 课堂练习:HTML-----------一般标签、常用标签
[]练习:一般标签.常用标签 代码: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" " ...
- POJ 2704 Pascal's Travels 【DFS记忆化搜索】
题目传送门:http://poj.org/problem?id=2704 Pascal's Travels Time Limit: 1000MS Memory Limit: 65536K Tota ...
- [18/11/26] this关键字、static关键字和静态块(及语句块)
1.this关键字 this的本质就是“创建好的对象的地址”! 由于在构造方法调用前,对象已经创建.因此,在构造方法中也可以使用this代表“当前对象” [用法] 1. 在程序中产生二义性之处 ...
- Reverse Polish notation
Reverse Polish notation is a notation where every operator follows all of its operands. For example, ...
- mybatis学习记录四——输入、输出映射
6 输入映射 通过parameterType指定输入参数的类型,类型可以是简单类型.hashmap.pojo的包装类型. 6.1.1 需求 完成用户信息的综合查询,需要传入查询条件很 ...
- 【luogu P2169 正则表达式】 题解
题目链接:https://www.luogu.org/problemnew/show/P2169 tarjan缩点 + SPFA 缩完点之后加边注意别写错. 也可以不用建两个图,可以在一张图上判断是否 ...
- TensorFlow安装环境的误区
安装py一定要注意安装的版本,我一开始安装的3.7版本的,现在还没有支持,另外,看清楚自己电脑是32位还是64位的