POJ-2421-Constructing Roads(最小生成树 普利姆)
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 26694 | Accepted: 11720 |
Description
We know that there are already some roads between some villages and
your job is the build some roads such that all the villages are connect
and the length of all the roads built is minimum.
Input
first line is an integer N (3 <= N <= 100), which is the number
of villages. Then come N lines, the i-th of which contains N integers,
and the j-th of these N integers is the distance (the distance should be
an integer within [1, 1000]) between village i and village j.
Then there is an integer Q (0 <= Q <= N * (N + 1) / 2). Then
come Q lines, each line contains two integers a and b (1 <= a < b
<= N), which means the road between village a and village b has been
built.
Output
should output a line contains an integer, which is the length of all the
roads to be built such that all the villages are connected, and this
value is minimum.
Sample Input
3
0 990 692
990 0 179
692 179 0
1
1 2
Sample Output
179
题意:题意十分简单粗暴,首行给出N,接着是个N*N的矩阵,map[i][j]就代表i到j的权值。接着给出Q,下面Q行,每行两个数字A,B,代表A到B,B到A的权值为0。最后输出最小生成树的权值和就行。
思路:由于是稠密图,所以选用普利姆算法比较合适,
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
#define N 110
#define M 0x3f3f3f3f//用一个大值表示两点不通 int map[N][N];
int vis[N],dst[N];//vis标已加入MST的点,dst存放各点到MST的最小距离
int n,q; void init()//初始图
{
int i,j; for (i=0;i<N;i++)
{
for (j=0;j<N;j++)
{
i==j?map[i][j]=0:map[i][j]=M;//自己到自己的点距离为0
}
}
memset(vis,0,sizeof(vis));
memset(dst,0,sizeof(dst));
} void prime()
{
int ans=0,i,min,j,k,point; vis[1]=1;//1放入MST
for (i=1;i<=n;i++)
{
dst[i]=map[i][1];//dst初始化
} for (i=1;i<=n;i++)
{
min=M;
for (j=1;j<=n;j++)//找距MST最近的点
{
if (vis[j]==0&&min>dst[j])
{
min=dst[j];
point=j;
}
}
if (min==M)//没有连通点
{
break;
} vis[point]=1;//把距MST最近的点加入MST
ans=ans+dst[point]; for (k=1;k<=n;k++)//更新各点到MST的最小距离
{
if (vis[k]==0&&dst[k]>map[k][point])
{
dst[k]=map[k][point];
}
}
}
printf("%d\n",ans);
} int main()
{
int i,j,x,y; scanf("%d",&n);
init();
for (i=1;i<=n;i++)
{
for (j=1;j<=n;j++)
{
scanf("%d",&map[i][j]);
}
} scanf("%d",&q);
for (i=0;i<q;i++)
{
scanf("%d%d",&x,&y);//已连通的两点权为0
map[x][y]=0;
map[y][x]=0;
} prime(); return 0;
}
POJ-2421-Constructing Roads(最小生成树 普利姆)的更多相关文章
- POJ 2421 Constructing Roads (最小生成树)
Constructing Roads Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u ...
- POJ - 2421 Constructing Roads (最小生成树)
There are N villages, which are numbered from 1 to N, and you should build some roads such that ever ...
- 最小生成树-普利姆(Prim)算法
最小生成树-普利姆(Prim)算法 最小生成树 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一种特殊的图),或者 ...
- 最小生成树-普利姆算法lazy实现
算法描述 lazy普利姆算法的步骤: 1.从源点s出发,遍历它的邻接表s.Adj,将所有邻接的边(crossing edges)加入优先队列Q: 2.从Q出队最轻边,将此边加入MST. 3.考察此边的 ...
- 图论---最小生成树----普利姆(Prim)算法
普利姆(Prim)算法 1. 最小生成树(又名:最小权重生成树) 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一 ...
- 最小生成树-普利姆算法eager实现
算法描述 在普利姆算法的lazy实现中,参考:普利姆算法的lazy实现 我们现在来考虑这样一个问题: 我们将所有的边都加入了优先队列,但事实上,我们真的需要所有的边吗? 我们再回到普利姆算法的lazy ...
- POJ 2421 Constructing Roads (最小生成树)
Constructing Roads 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/D Description There ar ...
- POJ - 2421 Constructing Roads 【最小生成树Kruscal】
Constructing Roads Description There are N villages, which are numbered from 1 to N, and you should ...
- POJ 2421 Constructing Roads (Kruskal算法+压缩路径并查集 )
Constructing Roads Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 19884 Accepted: 83 ...
随机推荐
- C#并行编程 z
目录 C#并行编程-相关概念 C#并行编程-Parallel C#并行编程-Task C#并行编程-并发集合 C#并行编程-线程同步原语 C#并行编程-PLINQ:声明式数据并行 背景 基于任务的程序 ...
- Hybris ECP(Enterprise Commerce Platform)的调试
This blog is written to demonstrate how to setup debug environment for Hybris ECP(Enterprise Commerc ...
- bzoj 2434 [Noi2011]阿狸的打字机——AC自动机
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2434 dfs AC自动机,走过的点权值+1,回溯的时候权值-1:走到询问的 y 串的节点,看 ...
- POJ 1416 Shredding Company【dfs入门】
题目传送门:http://poj.org/problem?id=1416 Shredding Company Time Limit: 1000MS Memory Limit: 10000K Tot ...
- Extjs 4.2 panel 添加 click 事件及右键菜单
listeners: { render: function(c) { c.body.on('click', function() { //TODO 添加点击事件功能 }); c.body.on('co ...
- Question20180106 Java环境变量的配置及为什么要配置环境变量
Question 1 Java环境变量的配置及为什么要配置环境变量 Q1.1为什么要配置环境变量 在学习JAVA的过程中,涉及到多个环境变量(environment variable)的概念,如PA ...
- git使用过程的问题与解决办法
一.什么是Git Git是目前世界上最先进的分布式版本控制系统.工作原理 / 流程: Workspace:工作区Index / Stage:暂存区Repository:仓库区(或本地仓库)Remote ...
- jdk下载安装
1.下载地址:https://www.oracle.com 注册,登陆,选择版本下载(注意,下载时提示you must accept the license agreement before down ...
- python之selectors
selectors是select模块的包装器,ptython文档建议大部分情况使用selectors而不是直接使用selectors 样例代码如下 # -*- coding: utf-8 -*- __ ...
- ant-design-pro使用服务器数据接口代理配置
因为是新入门antd-pro这个的小白,所以在mock数据和服务器数据切换这里搞了将近2天才弄好,配置如下,供各位初学者参考,如有错误的地方,请大神指出~叩谢!! 下面开始干货: 1..roadhog ...