Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 26694   Accepted: 11720

Description

There are N villages, which are numbered from 1 to N, and you should build some roads such that every two villages can connect to each other. We say two village A and B are connected, if and only if there is a road between A and B, or there exists a village C such that there is a road between A and C, and C and B are connected.

We know that there are already some roads between some villages and
your job is the build some roads such that all the villages are connect
and the length of all the roads built is minimum.

Input

The
first line is an integer N (3 <= N <= 100), which is the number
of villages. Then come N lines, the i-th of which contains N integers,
and the j-th of these N integers is the distance (the distance should be
an integer within [1, 1000]) between village i and village j.

Then there is an integer Q (0 <= Q <= N * (N + 1) / 2). Then
come Q lines, each line contains two integers a and b (1 <= a < b
<= N), which means the road between village a and village b has been
built.

Output

You
should output a line contains an integer, which is the length of all the
roads to be built such that all the villages are connected, and this
value is minimum.

Sample Input

3
0 990 692
990 0 179
692 179 0
1
1 2

Sample Output

179

题意:题意十分简单粗暴,首行给出N,接着是个N*N的矩阵,map[i][j]就代表i到j的权值。接着给出Q,下面Q行,每行两个数字A,B,代表A到B,B到A的权值为0。最后输出最小生成树的权值和就行。

思路:由于是稠密图,所以选用普利姆算法比较合适,
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
#define N 110
#define M 0x3f3f3f3f//用一个大值表示两点不通 int map[N][N];
int vis[N],dst[N];//vis标已加入MST的点,dst存放各点到MST的最小距离
int n,q; void init()//初始图
{
int i,j; for (i=0;i<N;i++)
{
for (j=0;j<N;j++)
{
i==j?map[i][j]=0:map[i][j]=M;//自己到自己的点距离为0
}
}
memset(vis,0,sizeof(vis));
memset(dst,0,sizeof(dst));
} void prime()
{
int ans=0,i,min,j,k,point; vis[1]=1;//1放入MST
for (i=1;i<=n;i++)
{
dst[i]=map[i][1];//dst初始化
} for (i=1;i<=n;i++)
{
min=M;
for (j=1;j<=n;j++)//找距MST最近的点
{
if (vis[j]==0&&min>dst[j])
{
min=dst[j];
point=j;
}
}
if (min==M)//没有连通点
{
break;
} vis[point]=1;//把距MST最近的点加入MST
ans=ans+dst[point]; for (k=1;k<=n;k++)//更新各点到MST的最小距离
{
if (vis[k]==0&&dst[k]>map[k][point])
{
dst[k]=map[k][point];
}
}
}
printf("%d\n",ans);
} int main()
{
int i,j,x,y; scanf("%d",&n);
init();
for (i=1;i<=n;i++)
{
for (j=1;j<=n;j++)
{
scanf("%d",&map[i][j]);
}
} scanf("%d",&q);
for (i=0;i<q;i++)
{
scanf("%d%d",&x,&y);//已连通的两点权为0
map[x][y]=0;
map[y][x]=0;
} prime(); return 0;
}

POJ-2421-Constructing Roads(最小生成树 普利姆)的更多相关文章

  1. POJ 2421 Constructing Roads (最小生成树)

    Constructing Roads Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

  2. POJ - 2421 Constructing Roads (最小生成树)

    There are N villages, which are numbered from 1 to N, and you should build some roads such that ever ...

  3. 最小生成树-普利姆(Prim)算法

    最小生成树-普利姆(Prim)算法 最小生成树 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一种特殊的图),或者 ...

  4. 最小生成树-普利姆算法lazy实现

    算法描述 lazy普利姆算法的步骤: 1.从源点s出发,遍历它的邻接表s.Adj,将所有邻接的边(crossing edges)加入优先队列Q: 2.从Q出队最轻边,将此边加入MST. 3.考察此边的 ...

  5. 图论---最小生成树----普利姆(Prim)算法

    普利姆(Prim)算法 1. 最小生成树(又名:最小权重生成树) 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一 ...

  6. 最小生成树-普利姆算法eager实现

    算法描述 在普利姆算法的lazy实现中,参考:普利姆算法的lazy实现 我们现在来考虑这样一个问题: 我们将所有的边都加入了优先队列,但事实上,我们真的需要所有的边吗? 我们再回到普利姆算法的lazy ...

  7. POJ 2421 Constructing Roads (最小生成树)

    Constructing Roads 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/D Description There ar ...

  8. POJ - 2421 Constructing Roads 【最小生成树Kruscal】

    Constructing Roads Description There are N villages, which are numbered from 1 to N, and you should ...

  9. POJ 2421 Constructing Roads (Kruskal算法+压缩路径并查集 )

    Constructing Roads Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 19884   Accepted: 83 ...

随机推荐

  1. npm run dev运行Vue项目报错:Node Sass does not yet support your current environment

    导入Vue项目后,#npm run dev 报错: error in ./src/pages/hello.vue Module build failed: Error: Node Sass does ...

  2. ubuntu 18 环境下使用 @vue-cli 3.2 新建 vue 项目

    ubuntu 18 环境下使用 @vue-cli 3.2 新建 vue 项目 标签(空格分隔): Vue 首先安装全局@vue-cli工具: npm install -g @vue/cli 然后创建项 ...

  3. 使用sqlloader向oracle导入文本数据

    文本文件如下,注意文件名必须有后缀,文本行首也需要|分隔符:[oracle@ycr test]$ more person.txt|aaa|123|m|aaa|123|m|aaa|123|m|aaa|1 ...

  4. CentOS7 查询已安装的包方便整理 /卸载

    以PHP为例.首先查看已安装的PHP rpm -qa |grep php 输出结果: php-cli--.el7.x86_64 php-common--.el7.x86_64 查询rpm包的安装时间和 ...

  5. Android 高级UI设计笔记09:Android实现无限滚动列表

    1. 无限滚动列表应用场景: ListView和GridView已经成为原生的Android应用实现中两个最流行的设计模式.目前,这些模式被大量的开发者使用,主要是因为他们是简单而直接的实现,同时他们 ...

  6. 关于Unix哲学

    http://www.ruanyifeng.com/blog/2009/06/unix_philosophy.html 这几天,我在看Unix,发现很多人在谈"Unix哲学",也就 ...

  7. 深入 Struts2 的配置 - 处理多个请求-处理请求结果-模型驱动-异常机制

    转:http://www.java3z.com/cwbwebhome/article/article2/2938.html?id=1631 本部分主要介绍struts.xml的常用配置. 1.1.   ...

  8. 使用带有数组的 ng-bind

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  9. 重写viewWillAppear 和 viewWillDisAppear时[super viewWillAppear] 和 [super viewWillDisappear]的调用位置

    参考网址:https://stackoverflow.com/questions/3906704/when-should-i-call-super 在写代码的过程中如果重写了viewWillAppea ...

  10. logback.xml模板详解

    <?xml version="1.0" encoding="UTF-8"?> <!-- 配置文件每隔1分钟,就检查更新 --> < ...