Minimum Transport Cost

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9052    Accepted Submission(s): 2383

Problem Description
These are N cities in Spring country. Between each pair of cities there may be one transportation track or none. Now there is some cargo that should be delivered from one city to another. The transportation fee consists of two parts: 
The cost of the transportation on the path between these cities, and

a certain tax which will be charged whenever any cargo passing through one city, except for the source and the destination cities.
You must write a program to find the route which has the minimum cost.

 
Input
First is N, number of cities. N = 0 indicates the end of input.
The data of path cost, city tax, source and destination cities are given in the input, which is of the form:

a11 a12 ... a1N
a21 a22 ... a2N
...............
aN1 aN2 ... aNN
b1 b2 ... bN

c d
e f
...
g h

where aij is the transport cost from city i to city j, aij = -1 indicates there is no direct path between city i and city j. bi represents the tax of passing through city i. And the cargo is to be delivered from city c to city d, city e to city f, ..., and g = h = -1. You must output the sequence of cities passed by and the total cost which is of the form:

 
Output
From c to d :
Path: c-->c1-->......-->ck-->d
Total cost : ......
......

From e to f :
Path: e-->e1-->..........-->ek-->f
Total cost : ......

Note: if there are more minimal paths, output the lexically smallest one. Print a blank line after each test case.

Sample Input
5
0 3 22 -1 4
3 0 5 -1 -1
22 5 0 9 20
-1 -1 9 0 4
4 -1 20 4 0
5 17 8 3 1
1 3
3 5
2 4
-1 -1
0
 
Sample Output
From 1 to 3 :
Path: 1-->5-->4-->3
Total cost : 21
 
 
From 3 to 5 :
Path: 3-->4-->5
Total cost : 16
 
From 2 to 4 :
Path: 2-->1-->5-->4
Total cost : 17
 
Source
 
题意,给一张n*n的地图,-1表示不联通,正整数为边权,每个点有点权,给定起点s和终点t,s到t的代价是经过的边权和加上路径上除了s和t的点权和,求s到t的最短路并输出路径
思路:floyd,path[i][j]表示i到j路径上的第一个点
/*
ID: LinKArftc
PROG: 1385.cpp
LANG: C++
*/ #include <map>
#include <set>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <cstdio>
#include <string>
#include <utility>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define eps 1e-8
#define randin srand((unsigned int)time(NULL))
#define input freopen("input.txt","r",stdin)
#define debug(s) cout << "s = " << s << endl;
#define outstars cout << "*************" << endl;
const double PI = acos(-1.0);
const double e = exp(1.0);
const int inf = 0x3f3f3f3f;
const int INF = 0x7fffffff;
typedef long long ll; const int maxn = ; int mp[maxn][maxn];
int path[maxn][maxn];//path[i][j]记录从i到j的下一个点
int tax[maxn];
int n, s, t; void floyd() {
for (int k = ; k <= n; k ++) {
for (int i = ; i <= n; i ++) {
for (int j = ; j <= n; j ++) {
if (i == k || j == k) continue;
int tmp = mp[i][k] + mp[k][j] + tax[k];
if (mp[i][j] > tmp) {
mp[i][j] = tmp;
path[i][j] = path[i][k];
} else if (mp[i][j] == tmp) {
path[i][j] = min(path[i][j], path[i][k]);
}
}
}
}
} void print_path() {
printf("Path: %d", s);
int cur = s;
while (cur != t) {
cur = path[cur][t];
printf("-->%d", cur);
}
printf("\n");
} int main() {
while (~scanf("%d", &n) && n) {
for (int i = ; i <= n; i ++) {
for (int j = ; j <= n; j ++) {
scanf("%d", &mp[i][j]);
if (mp[i][j] == -) mp[i][j] = inf;//最好用inf替换,用-1的话特判很容易错
else path[i][j] = j;
}
}
for (int i = ; i <= n; i ++) scanf("%d", &tax[i]);
floyd();
while (~scanf("%d %d", &s, &t)) {
if (s == - && t == -) break;
printf("From %d to %d :\n", s, t);
print_path();
printf("Total cost : %d\n\n", mp[s][t]);
}
} return ;
}

HDU1385 (Floyd记录路径)的更多相关文章

  1. ACM/ICPC 之 Floyd+记录路径后继(Hdu1385(ZOJ1456))

    需要处理好字典序最小的路径 HDU1385(ZOJ1456)-Minimum Transport //Hdu1385-ZOJ1456 //给定邻接矩阵,求给定起点到终点的最短路径,若有相同路长的路径按 ...

  2. HDU 1385 Minimum Transport Cost( Floyd + 记录路径 )

    链接:传送门 题意:有 n 个城市,从城市 i 到城市 j 需要话费 Aij ,当穿越城市 i 的时候还需要话费额外的 Bi ( 起点终点两个城市不算穿越 ),给出 n × n 大小的城市关系图,-1 ...

  3. hdu 1385 floyd记录路径

    可以用floyd 直接记录相应路径 太棒了! http://blog.csdn.net/ice_crazy/article/details/7785111 #include"stdio.h& ...

  4. Minimum Transport Cost(floyd+二维数组记录路径)

    Minimum Transport Cost Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/O ...

  5. [Python] 弗洛伊德(Floyd)算法求图的直径并记录路径

    相关概念 对于一个图G=(V, E),求图中两点u, v间最短路径长度,称为图的最短路径问题.最短路径中最长的称为图的直径. 其中,求图中确定的某两点的最短路径算法,称为单源最短路径算法.求图中任意两 ...

  6. hdu 1385 Floyd 输出路径

    Floyd 输出路径 Sample Input50 3 22 -1 43 0 5 -1 -122 5 0 9 20-1 -1 9 0 44 -1 20 4 05 17 8 3 1 //收费1 3 // ...

  7. poj1417 带权并查集 + 背包 + 记录路径

    True Liars Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2713   Accepted: 868 Descrip ...

  8. POJ 3436:ACM Computer Factory(最大流记录路径)

    http://poj.org/problem?id=3436 题意:题意很难懂.给出P N.接下来N行代表N个机器,每一行有2*P+1个数字 第一个数代表容量,第2~P+1个数代表输入,第P+2到2* ...

  9. hdu 1026 Ignatius and the Princess I (bfs+记录路径)(priority_queue)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1026 Problem Description The Princess has been abducted ...

随机推荐

  1. 虚拟现实-VR-UE4-认识UE4

    VR的火热,让每个人都想参与一下, 公司在展会上面搞了一个VR的Demo,关注度超出预期,使得公司高层决定来个VR项目 所以 关于UE4 百度百科地址:http://baike.baidu.com/l ...

  2. Kotlin的属性委托:无上下文情况下Android的赋值(KAD 15)

    作者:Antonio Leiva 时间:Mar 9, 2017 原文链接:https://antonioleiva.com/property-delegation-kotlin/ 如我们在前面文章中读 ...

  3. python 基础篇 06 编码 以及小知识点补充

    本节主要内容: 1. is和==的区别2. 编码的问题 ⼀. is和==的区别1. id()通过id()我们可以查看到⼀个变量表⽰的值在内存中的地址 注  ----<<<在pytho ...

  4. centos7安装python3.7

    Centos7安装Python3的方法   由于centos7原本就安装了Python2,而且这个Python2不能被删除,因为有很多系统命令,比如yum都要用到. [root@VM_105_217_ ...

  5. c# 复选下拉框

    引用dll: http://pan.baidu.com/s/1qXa97UO 自定义类: namespace TMI_S { /// <summary> /// 功能描述:自定义多选下拉框 ...

  6. Spring Boot学习(一):入门篇

    目录 Spring Boot简介 Spring Boot快速搭建 1 新建项目 2 运行项目 3 设置spring boot可以热部署(修改后端代码后,自动部署,不用手动部署) 3.1:配置pom.x ...

  7. Eclipse下JRebel6.5.0热部署插件安装、破解及配置

    发现一个问题:如果安装了jRebel,但是并未对项目添加jRebel监听时,如果重写jar包中的类, 虽然重写后的类会得到编译(classes中的class已经是修改后的class),但是并不会调用重 ...

  8. android开发中常犯的几个错误整理

    新手程序猿,在开发中难免会犯各种各样的错误,以下是整理的一些android开发中常见的错误,一起来看看吧. 1.避免将多个类放在一个文件夹里面,除非是一次性使用的内部类. 就是一个文件,最好给分它同名 ...

  9. sql in()批量操作

    //批量修改 update 表A   set A.name='n'  where   A.id    in(字符串); //批量删除 delete  from    表名称 where  列名称   ...

  10. AGC016B Colorful Hats(构造)

    题目大意: 给定n和n个数,每个数a[i]代表除了i外序列中颜色不同的数的个数,问能否构造出来这个数列. 比较简单,首先先求出来a数列的最大值Max, 如果有数小于Max-1,那么显然是不存在的 接下 ...